Introduction to Machine Learning

Neonlinear Support Vector Machines
FeatureiGeneration for Nonlinear
Separation

-
. N Learning goals
., Vot A ¥
. L4 @ Understand how nonlinearity can be
&l ! introduced via feature maps in SVMs
A e @ Know the limitation of feature maps
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NONLINEARITY VIA FEATURE MAPS

@ How to extend a linear classifier, e.g. the SVM, to nonlinear
separation between classes?

@ We could project the data from 2D into a richer 3D feature space!
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NONLINEARITY VIA FEATURE MAPS /2

In order to “lift" the data points into a higher dimension, we have to find
a suitable feature map ¢ : A — ®. Let us consider another example
where the classes lie on two concentric circles:
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= NONLINEARITY VIA FEATURE MAPS /3
O0OX

We apply the feature map ¢(x1, x2) = (x1, %2, X2 + x3) to map our X O
points into a 3D space. Now our data can be separated by a

hyperplane. x x
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m NONLINEARITY VIA FEATURE MAPS /4

The hyperplane learned in ® C R? yields a nonlinear decision
boundary when projected back to X' = R2.
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FEATURE MAPS: COMPUTATIONAL LIMITATIONS

Let us have a look at a similar nonlinear feature map ¢ : R2 — R>,
where we collect all monomial feature extractors up to degree 2
(pairwise interactions and quadratic effects):

O(x1, %) = (X5, X5, X1Xa, X1, Xa).

For p features vectors, there are k; different monomials where the
degree is exactly d, and kx different monomials up to degree d.

d+p—1 d+
() w()

Which is quite a lot, if p is large.
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FEATURE MAPS: COMPUTATIONAL LIMITATIONS
/2

et us'see hbw wellwe cén classrfythe 28°% 2B pixelimages of the handwritter digits
ofthe MNIST dataset (70K observations across™ 0 classes). ‘We use'SVIFwith a

nonlinear féature map which projects the images to a space of all monomials up to the
degreed and C = 1:
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For this scenario, with increasing degree d the test mmce decreases.

NB: We bandle the multiclass task with the "one-against-one” approach, We are .
somewhat lazy and only use 700 obsgrvations to train (rest for testing). We do not do
any tuning - as we always should for the SVM!
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FEATURE MAPS: COMPUTATIONAL LIMITATIONS

/3

Howeveryeven a 16 116:pixelinputimageresultsiin infeasible
dimensions for our extracted features (monomials up to degree d).
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