Introduction to Machine Learning

B Multiclass Classification
| Multiclass Classification and Losses
7

Learning goals

@ "Know what multiclags means and
which-ty pes of classifiersexist

@ Know the MC 0-1-loss
@ Know the MC brier score
@ Know the MC logarithmic loss



REVISION: RISK FOR CLASSIFICATION

Goal: Find amodel f: A — RY, where g is the number of classes, that
minimizes the expected loss over random variables (x, y) ~ [y,

R(f) = Ex[L(y, f(x))] = Ex | > L(k, f(x))P(y = kix = x)
key

The optimal model for a loss function L(y, f(x)) is
f(x} =rargmin Z L(K (xR P(Y =k|x =x)
feH oy
K ey

Because we usually do not know [Py, we minimize the empirical risk
as an approximation to the theoretical risk

[ ar%}r:in Rempo(f) = ar’g{ir:in i b (y(f);f (x“’)) .
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0-1-LOSS

We have already seen that optimizer A(x) of the theoretical risk using
the 0-1-loss

Ly, h(x)) =1 {y#h(x)}
is the Bayes optimal classifier, with

hib(x) =rargmax Py =+ | x =x)
ey
3R4 the Sptimal Genstant Made! eattirsless predictsh
HX) =k ke 1.2,
xwi_‘ ‘wwu i_‘ predi d_] most frequel ‘ c11.8 Iy |l
1S the classifier that predicts the most frequent class k € {1.2.....g} in

the data NS
(i) = mode {3}
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MC BRIER SCORE

The (binary) Brier score generalizes to the multiclass Brier score thatis
defined on a vector of class probabilities (1 (x), ..., mg(x))

g

Ly m(x) = D (Lyeiy — mlx))°.

k=1

Optimal constant prob vector (x) = (6, ..., ,):
2
0= i Res(®) i %w)=(;;( o))

We solve this by setting the derivative w.r.t. # to 0

IR emp(0)
# -2 Z(lt ek} 0*)—0:'ﬁk(x)—0k—-zlb,“ Kk}

being the fraction of class-k observations.

g .
NB: We naively ignored the constraints! But since 3 6« = 1 holds for the minimizer of
L2
the unconstrained problem, we are fine. Could have also used Lagrange multipliers!

o
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MC BRIER SCORE /2

Claim: For g = 2 the MC Brier score is exactly twice as high as the binary Brier score,
defined as (m,(x) — ¥)%.

Proof: 1
Ly, 7 () = Y (Liyny — me(x))?
Fory =0:
Liy.n(x)) = (1 =ma(x))*+ (0 —mi(x))* = (1 = (1 = m(x)))* + mi(x)*
= mx)°* + mx)® =2 m(x)°
Fory =1:
Ly, x(x)) = (0—m(x)*+ (1 - m(x))* = (~(1 —m(x)))* + (1 = m(x))*
= 1-2.mx)+mx)°+1-2 m(x)+m(x)°
= 2. (1-2-mx)+mx)°*)=2-(1 —m(x)° =2 (m(x) - 1)°
~J2omi(x)? fory =0 - 2
Ly.=(x) = {2,(,,1(,) 1 ry—1 =2 mE=)

Itroducton to Machine Learning -~ 9/12

O0X

X X



LOGARITHMIC LOSS (LOG-LOSS) /2

Claim: For g = 2 the log-loss is equal to the Bernoulli loss, defined as

Lo.1(y. m1(x)) = —ylog(ms(x)) — (1 — y)log(1 — 1 (x))
Proof:
Loaly,m(x)) = —ylog(mi(x)) — (1 — y)log(1 — m1(x))
= —ylog(m1(x)) — (1 — y)log(mo(x))

= —1y,_qlog(mi(x)) — L;,_gylog(mo(x))

= - Zl{y_k} lOg(Wk(x)) = L(Yv 1|’(X))
k=0
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