Introduction to Machine Learning

] CLinearSupportVector Machines
] Soft-Margin SVM

Learning goals
@ "Understand that the hard-margin

) : e SVM problem is only solvable for
NN I lineay separable data
NE ey @ Know that the soft-margin SVM
RN A A problem therefore allows margin
™ st violations
.

@ _The degreeto which margin
violations are tolerated is controlled
by a hyperparameter



NON-SEPARABLE DATA

o0 05 10

® Assume that dataset D is not linearly separable.

@ Margin maximization becomes meaningless because the
hard-margin SVM optimization problem has contradictory
constraints and thus an empty feasible region.
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MARGIN VIOLATIONS

® We still want a large margin for most of the examples.
@ We allow violations of the margin constraints via slack vars () > 0

y(i) (<g’x(i)> + 90) >1— C(i)
® Even for separable data, a decision boundary with a few violations

and a large average margin may be preferable to one without any
violations and a small average margin.

We assume ~ = 1 to not
further complicate pre-
sentation.
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MARGIN VIOLATIONS

@ Now we have two distinct and contradictory goals:
@ Maximize the margin.
© Minimize margin violations.
® Let's minimize a weighted sum of them: (8|2 + ¢ 3.7, ¢

@ Constant C > 0 controls the relative importance of the two parts.

C=05 C=10(
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SOFT-MARGIN SVM

The linear soft-margin SVM is the convex quadratic program:

1.5 LIy
min =8|+ C (1)
i, 3100° e3¢

sty (<0,x(‘)> +60)>1-(" Yie{1,... n},
and (D=0 vie{1,...,n}

This is called “soft-margin” SVM because the *hard" margin constraint
is replaced with a “softened” constraint that can be violated by an
amount ¢,
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LAGRANGE FUNCTION AND KKT

The Lagrange function of the soft-margin SVM is given by: O O x
n n
£(0.00,C.cm) = 5 1013+ 03¢ = Yo (0 ((0x) +0) ~1+¢) X | O
=1 =1
- Xn:;t.([‘] with Lagrange multipliers e and . X X
=1
The KKT conditions fori = 1....,nare:
a; = 0, = 0,
y(') (<0~ x(')> + 00) —14+ C['] >0, C['] >0,
« (y[‘) (<0 x[‘)> + 00) -1 +C[']) =0, Wy =o0.

With these, we derive (see our optimization course) that
n n

0 = Zn,y[')xm, 0= Zn,y['), a=C—p; Yi=1,...,n
=1 =1
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SOFT-MARGIN SVM DUAL FORM

Can be derived exactly as for the hard margin case.
mac Sa- 2303 aiayy® (x0,x0)
acR" 2 4

=1 j=1
s.t. 0< (a < C,

n
Z aiy™ =0,
i=1

or, in matrix notation:

1
T, 1. 1, .
max 1" e diag(y)K diag(y)a
s.t aTy=O,

0<a<C,

with K := XXT.

Intoduction o Machine Leaming ~ 6/9



COST PARAMETER C

@ The parameter C controls the trade-off between the two conflicting O O X
objectives of maximizing the size of the margin and minimizing the
frequency and size of margin violations. X O
@ Itis known under different names, such as “trade-off parameter”,
“regularization parameter”, and “complexity control parameter”. X X

@ For sufficiently large C margin violations become extremely costly,
and the optimal solution does not violate any margins if the data is
separable. The hard-margin SVM is obtained as a special case.
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SUPPORT VECTORS

There are three types of training examples:

@ Non-SVs have o; = 0 (= 1 = C = (!} = 0) and can be removed from
the problem without changing the solution. Their margin yf(x) = 1. They
are always classified correctly and are never inside of the margin.

® SVswith 0 < a; < C (= p >0 = (") = 0) are located exactly on the
margin and have yf(x) = 1.

® SVs with a; = C have an associated slack (!") = 0. They can be on the
margin or can be margin violators with yf(x) < 1 (they can even be
misclassified if () = 1).

As for hard-margin case: on the margin we can have SVs and non-SVs.
Oy
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