Introduction to Machine Learning

Soft-Margin SVM

Learning goals

Learning goals at the hard-margin

- Understand that the hard-margin SVM problem is only solvable for
- linearly separable data SVM
- Know that the soft-margin SVM problem therefore allows margin
- violations violations violations are tolerated is
- The degree to which margin violations are tolerated is controlled by a hyperparameter

NON-SEPARABLE DATA

- Assume that dataset D is not linearly separable.
- Margin maximization becomes meaningless because the hard-margin SVM optimization problem has contradictory constraints and thus an empty feasible region.

MARGIN VIOLATIONS

- We still want a large margin for most of the examples.
- We allow violations of the margin constraints via slack vars $\zeta^{(i)} \geq 0$

$$y^{(i)}\left(\left\langle \boldsymbol{\theta}, \mathbf{x}^{(i)} \right\rangle + \boldsymbol{\theta}_0 \right) \geq 1 - \zeta^{(i)}$$

 Even for separable data, a decision boundary with a few violations and a large average margin may be preferable to one without any violations and a small average margin.

We assume $\gamma=1$ to not further complicate presentation.

MARGIN VIOLATIONS

- · Now we have two distinct and contradictory goals:
 - Maximize the margin.
 - Minimize margin violations.
- Let's minimize a weighted sum of them: $\frac{1}{2} \|\theta\|^2 + C \sum_{i=1}^n \zeta^{(i)}$
- Constant C > 0 controls the relative importance of the two parts.

SOFT-MARGIN SVM

The linear soft-margin SVM is the convex quadratic program:

$$\begin{aligned} & \min_{\boldsymbol{\theta}, \boldsymbol{\theta}_0, \zeta^{(i)}} & \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{i=1}^n \zeta^{(i)} \\ & \text{s.t.} & y^{(i)} \left(\left\langle \boldsymbol{\theta}, \mathbf{x}^{(i)} \right\rangle + \boldsymbol{\theta}_0 \right) \geq 1 - \zeta^{(i)} & \forall \, i \in \{1, \dots, n\}, \\ & \text{and} & \zeta^{(i)} \geq 0 & \forall \, i \in \{1, \dots, n\}. \end{aligned}$$

This is called "soft-margin" SVM because the "hard" margin constraint is replaced with a "softened" constraint that can be violated by an amount $\zeta^{(i)}$.

LAGRANGE FUNCTION AND KKT

The Lagrange function of the soft-margin SVM is given by:

$$\begin{split} \mathcal{L}(\boldsymbol{\theta}, \theta_0, \zeta, \boldsymbol{\alpha}, \boldsymbol{\mu}) &= \frac{1}{2} \left\| \boldsymbol{\theta} \right\|_2^2 + C \sum_{i=1}^n \zeta^{(i)} - \sum_{i=1}^n \alpha_i \left(y^{(i)} \left(\left\langle \boldsymbol{\theta}, \mathbf{x}^{(i)} \right\rangle + \boldsymbol{\theta}_0 \right) - 1 + \zeta^{(i)} \right) \\ &- \sum_{i=1}^n \mu_i \zeta^{(i)} \quad \text{with Lagrange multipliers } \boldsymbol{\alpha} \text{ and } \boldsymbol{\mu}. \end{split}$$

The KKT conditions for i = 1, ..., n are:

$$\begin{aligned} \alpha_i &\geq 0, & \mu_i \geq 0, \\ y^{(i)} \left(\left\langle \boldsymbol{\theta}, \mathbf{x}^{(i)} \right\rangle + \boldsymbol{\theta}_0 \right) - 1 + \zeta^{(i)} &\geq 0, & \zeta^{(i)} \geq 0, \\ \alpha_i \left(y^{(i)} \left(\left\langle \boldsymbol{\theta}, \mathbf{x}^{(i)} \right\rangle + \boldsymbol{\theta}_0 \right) - 1 + \zeta^{(i)} \right) &= 0, & \zeta^{(i)} \mu_i &= 0. \end{aligned}$$

With these, we derive (see our optimization course) that

$$\boldsymbol{\theta} = \sum_{i=1}^n \alpha_i \mathbf{y}^{(i)} \mathbf{x}^{(i)}, \quad 0 = \sum_{i=1}^n \alpha_i \mathbf{y}^{(i)}, \quad \alpha_i = \mathbf{C} - \mu_i \quad \forall i = 1, \dots, n.$$

SOFT-MARGIN SVM DUAL FORM

Can be derived exactly as for the hard margin case.

$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle$$
s.t. $0 \le \alpha_i \le C$,
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$
,

or, in matrix notation:

$$\begin{aligned} \max_{\boldsymbol{\alpha} \in \mathbb{R}^n} & \mathbf{1}^T \boldsymbol{\alpha} - \frac{1}{2} \boldsymbol{\alpha}^T \operatorname{diag}(\mathbf{y}) \boldsymbol{K} \operatorname{diag}(\mathbf{y}) \boldsymbol{\alpha} \\ \text{s.t.} & \alpha^T \mathbf{y} = \mathbf{0}, \\ & 0 \leq \boldsymbol{\alpha} \leq \boldsymbol{C}, \end{aligned}$$

with $\boldsymbol{K} := \mathbf{X}\mathbf{X}^T$.

COST PARAMETER C

- The parameter C controls the trade-off between the two conflicting objectives of maximizing the size of the margin and minimizing the frequency and size of margin violations.
- It is known under different names, such as "trade-off parameter", "regularization parameter", and "complexity control parameter".
- For sufficiently large C margin violations become extremely costly, and the optimal solution does not violate any margins if the data is separable. The hard-margin SVM is obtained as a special case.

SUPPORT VECTORS

There are three types of training examples:

- Non-SVs have α_i = 0 (⇒ μ_i = C ⇒ ζ⁽ⁱ⁾ = 0) and can be removed from the problem without changing the solution. Their margin yf(x) ≥ 1. They are always classified correctly and are never inside of the margin.
- SVs with 0 < α_i < C (⇒ μ_i > 0 ⇒ ζ⁽ⁱ⁾ = 0) are located exactly on the margin and have yf(x) = 1.
- SVs with α_i = C have an associated slack ζ⁽ⁱ⁾ ≥ 0. They can be on the margin or can be margin violators with yf(x) < 1 (they can even be misclassified if ζ⁽ⁱ⁾ ≥ 1).

As for hard-margin case: on the margin we can have SVs and non-SVs.

