Introduction to Machine Learning

Einear Support Vector Machines Support Vector Machine Training

Learning goals

Know that the SVM problem is

Learning goals

- Know that the SVM problem is not Pdifferentiable primal via
- Know how to optimize the SVM
 - problem in the primal via subgradient escenformulation via pairwise
- Know how to optimize SVM in the dual formulation via pairwise coordinate ascent

TRAINING SVM IN THE DUAL /2

Solution: Update two variables simultaneously

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{j=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle$$
s.t.
$$0 \leq \alpha_{i} \leq C \sum_{j=1}^{n} \alpha_{i} y^{(i)} = 0$$

- 1: Initialize lpha= 0 (or more cleverly)
- 2: **for** t = 1, 2, ... **do**
- Select some pair α_i, α_j to update next
- Optimize dual w.r.t. α_i, α_j, while holding α_k (k ≠ i, j) fixed
- 5: end for

The objective is quadratic in the pair, and $s:=y^{(i)}\alpha_i+y^{(i)}\alpha_j$ must stay constant. So both α are changed by same (absolute) amount, the signs of the change depend on the labels.

TRAINING SVM IN THE DUAL /3

Assume we are in a valid state, $0 \le \alpha_i \le C$. Then we chose¹ two observations (encircled in red) for the next iteration. Note they have opposite labels so the sign of their change is equal.

¹There are heuristics to pick the observations to speed up convergence.

TRAINING SVM IN THE DUAL /2

Sequential Minimal Optimization (SMO) exploits the fact that effectively we only need to solve a one-dimensional quadratic problem, over in interval, for which an analytical solution exists.

