Introduction to Machine Learning # Linear Support Vector Machines Linear Hard Margin SVM #### Learning goals - Know that the hard-margin SVM Learning goals - Know that the hard-margin SVM - maximizes the margin between data points and hyperplane - Know that this is a quadratic program - Know that support vectors are the data points closest to the separating hyperplane ### LINEAR CLASSIFIERS /2 - We want study how to build a binary, linear classifier from solid geometrical principles. - Which of these two classifiers is "better"? - → The decision boundary on the right has a larger safety margin. ## SUPPORT VECTOR MACHINES: GEOMETRY /2 • $$d\left(f,\mathbf{x}^{(i)}\right) = \frac{y^{(i)}f\left(\mathbf{x}^{(i)}\right)}{\|\theta\|} = y^{(i)}\frac{\theta^{T}\mathbf{x}^{(i)} + \theta_{0}}{\|\theta\|}$$ computes the (signed) distance to the separating hyperplane $f(\mathbf{x}) = 0$, positive for correct classifications, negative for incorrect. This expression becomes negative for misclassified points. ### SUPPORT VECTOR MACHINES: GEOMETRY /3 The distance of f to the whole dataset D is the smallest distance $$\gamma = \min_{i} \left\{ d\left(f, \mathbf{x}^{(i)}\right) \right\}.$$ This represents the "safety margin", it is positive if f separates and we want to maximize it. #### MAXIMUM MARGIN SEPARATION /2 Note that the same hyperplane does not have a unique representation: $$\{\mathbf{x} \in \mathcal{X} \mid \boldsymbol{\theta}^{\top}\mathbf{x} = 0\} = \{\mathbf{x} \in \mathcal{X} \mid \boldsymbol{c} \cdot \boldsymbol{\theta}^{\top}\mathbf{x} = 0\}$$ for arbitrary $c \neq 0$. To ensure uniqueness of the solution, we make a reference choice – we only consider hyperplanes with ||θ|| = 1/γ: $$\label{eq:problem} \begin{split} \max_{\boldsymbol{\theta}, \boldsymbol{\theta}_0} \quad & \gamma \\ \text{s.t.} \quad & \boldsymbol{y}^{(i)} \left(\left\langle \boldsymbol{\theta}, \boldsymbol{x}^{(i)} \right\rangle + \boldsymbol{\theta}_0 \right) \geq 1 \quad \forall \, i \in \{1, \dots, n\}. \end{split}$$ #### MAXIMUM MARGIN SEPARATION /3 • Substituting $\gamma = 1/\|\boldsymbol{\theta}\|$ in the objective yields: $$\label{eq:linear_problem} \begin{split} \max_{\boldsymbol{\theta}, \boldsymbol{\theta}_0} \quad & \frac{1}{\|\boldsymbol{\theta}\|} \\ \text{s.t.} \quad & y^{(i)} \left(\left\langle \boldsymbol{\theta}, \mathbf{x}^{(i)} \right\rangle + \theta_0 \right) \geq 1 \quad \forall \, i \in \{1, \dots, n\}. \end{split}$$ $$\begin{aligned} & \min_{\boldsymbol{\theta}, \boldsymbol{\theta}_0} & & \frac{1}{2} \|\boldsymbol{\theta}\|^2 \\ & \text{s.t.} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & \\ &$$