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Notice how the (p+1) decision variables (6, f,) have become n decisions
variables c, as constraints turned into variables and vice versa. Now every
data point has an associated non-negative weight.
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We find the stationary point of L(8. fy, «) w.r.t. 8,6, and obtain
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By inserting these expressions & simplifying we obtain the dual problem
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or, equivalently, in matrix notation:
r. 1 1. "
max 1o e diag(y)K diag(y)
st ary=0,
a >0,

with K -= XX.
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If (6. 6. ) fulfills the KKT conditions (stationarity, primal/dual feasibility,
complementary slackness), it solves both the primal and dual problem (strong
duality).

Under these conditions, and if we solve the dual problem and obtain &, we
know that @ is a linear combination of our data points:

n

§=aylx!

=1

Complementary slackness means:

& [y(') (<o,xf">+00) —1] =0 Yie {1, ..n}
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@ So either &, = 0, and is not active in the linear combination, or &, > 0,
then y0 ({8,x7) + dy) = 1, and (x'"), y"') has minimal margin and is a
support vector!

@ We see that we can directly extract the support vectors from the dual
variables and the @ solution only depends on them.

@ We can reconstruct the bias term f from any support vector:

o =y~ (0,40,
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