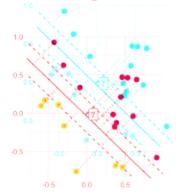
Introduction to Machine Learning

Linear Support Vector Machines Hard-Margin SVM Dual



Learning goals

Learning goals erive the SVM

Know how to derive the SVM dual problem

Notice how the (p+1) decision variables (θ, θ_0) have become n decisions variables α , as constraints turned into variables and vice versa. Now every data point has an associated non-negative weight.

$$L(\boldsymbol{\theta}, \theta_0, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{\theta}\|^2 - \sum_{i=1}^n \alpha_i \left[y^{(i)} \left(\left\langle \boldsymbol{\theta}, \mathbf{x}^{(i)} \right\rangle + \theta_0 \right) - 1 \right]$$
s.t. $\alpha_i \ge 0 \quad \forall i \in \{1, \dots, n\}.$

We find the stationary point of $L(\theta, \theta_0, \alpha)$ w.r.t. θ, θ_0 and obtain

$$\theta = \sum_{i=1}^{n} \alpha_i y^{(i)} \mathbf{x}^{(i)},$$

$$0 = \sum_{i=1}^{n} \alpha_i y^{(i)} \quad \forall i \in \{1, \dots, n\}.$$

By inserting these expressions & simplifying we obtain the dual problem

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle$$
s.t.
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0,$$

$$\alpha_i \ge 0 \ \forall i \in \{1, \dots, n\},$$

or, equivalently, in matrix notation:

$$\begin{aligned} \max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \quad & \mathbf{1}^T \boldsymbol{\alpha} - \frac{1}{2} \boldsymbol{\alpha}^T \operatorname{diag}(\mathbf{y}) \mathbf{\textit{K}} \operatorname{diag}(\mathbf{y}) \boldsymbol{\alpha} \\ \text{s.t.} \quad & \boldsymbol{\alpha}^T \mathbf{y} = 0, \\ & \boldsymbol{\alpha} \geq 0, \end{aligned}$$

with $K := XX^T$.

If $(\theta, \theta_0, \alpha)$ fulfills the KKT conditions (stationarity, primal/dual feasibility, complementary slackness), it solves both the primal and dual problem (strong duality).

Under these conditions, and if we solve the dual problem and obtain $\hat{\alpha}$, we know that θ is a linear combination of our data points:

$$\hat{\theta} = \sum_{i=1}^{n} \hat{\alpha}_{i} y^{(i)} \mathbf{x}^{(i)}$$

Complementary slackness means:

$$\hat{\alpha}_{i}\left[\mathbf{y}^{(i)}\left(\left\langle \mathbf{\theta},\mathbf{x}^{(i)}\right\rangle + \theta_{0}\right) - 1\right] = 0 \quad \forall \ i \in \{1,...,n\}.$$

$$\begin{split} \hat{\theta} &= \sum_{i=1}^{n} \hat{\alpha}_{i} y^{(i)} \boldsymbol{x}^{(i)} \\ \hat{\alpha}_{i} \left[y^{(i)} \left(\left\langle \boldsymbol{\theta}, \boldsymbol{x}^{(i)} \right\rangle + \theta_{0} \right) - 1 \right] &= 0 \quad \forall \ i \in \{1, ..., n\}. \end{split}$$

- So either â_i = 0, and is not active in the linear combination, or â_i > 0, then y⁽ⁱ⁾ (⟨θ, x⁽ⁱ⁾⟩ + θ₀) = 1, and (x⁽ⁱ⁾, y⁽ⁱ⁾) has minimal margin and is a support vector!
- We see that we can directly extract the support vectors from the dual variables and the θ solution only depends on them.
- We can reconstruct the bias term θ₀ from any support vector:

$$\theta_0 = \mathbf{y}^{(i)} - \left\langle \boldsymbol{\theta}, \mathbf{x}^{(i)} \right\rangle.$$

