Introduction to Machine Learning

] Linear:SupportVector Machines
I SVMs and Empirical Risk Minimization

I Learning goals
— ®  Know, why the SVM prablem can be
s B understood as (regularized) empirical
l

i . risk minimization problem

@ Know that the corresponding loss is
the hinge loss



REGULARIZED EMPIRICAL RISK MINIMIZATION

@ We motivated SVMs from a geometrical point of view: The margin
is a distance to be maximized.

@ This is not really true anymore under margin violations: The slack
variables are not really distances. Instead, ~ - (" is the distance
by which an observation violates the margin.

@ This already indicates that transferring the geometric intuition from
hard-margin SVMs to the soft-margin case has its limits.

@ There is an alternative approach to understanding soft-margin
SVMs: They are regularized empirical risk minimizers.
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SOFT-MARGIN SVM WITH ERM AND HINGE LOSS

We derived this QP for the soft-margin SVM: O 0O X
TS S X O
min |82+ ¢\
pmin, 26l ,Z_;@

sty ((0X0)48)>1-¢0 vie {1,....n) X X

and (D=0 vie{1,..., n}.

In the optimum, the inequalities will hold with equality (as we minimize
the slacks), so () = 1 — y( £ (x(?), but the lowest value (") can take
is 0 (we do no get a bonus for points beyond the margin on the correct
side). So we can rewrite the above:

1 - i A -y ity <
§||0||2+C§L(y( ),f(x< ))) L(y.f) = {0 o 1

We can also write L(y, f) = max(1 — yf,0).
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SOFT-MARGIN SVM WITH ERM AND HINGE LOSS
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Reomo(0) = ’Enen?- +cyL (ym. f (x(‘))) . L(y. f) = max(1— yf,0)

X X

® This nowobviously L2 regllarized empirical risk minimization.

@ Actually, a lot of ERM theory was established when Vapnik
fcotlinvented'the' SVM inthe ‘beginting of thie' 90s:

o Liscalléd hinge'loss ~ as it'tooks like a door hinge.

e Itis a continuous, convex, upper bound on the zero-one loss. In a
certain sense it is the best upper convex relaxation of the 0-1.
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I SOFF-MARGINSVM WITH ERM AND HINGE LOSS
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0151 2d hinge,loss / L Squares SVM:

ﬁ-nonz 1 CZL(y“) f(x(' )): L(y.f) = max(1 - y£,0)

@ Huber loss (sivothed hinge loss)

o The éHkh*.HféFb?éwﬂ&ﬁ does hot Tequirs any of the ferms — the
® loss oF thé régifatizer= it bé gesmetrically meanitight. 501190
o Th oV i I ATy GmpAE 161 10 Hefihé the Coiniey
optimization problem of the SVM.

Itis "well-behaved" due to convexity, every minimum is global.
@ The above is convex, without constraints! We might see this as
"easier to optimize" than the QP from before. But note-it is
non-differentiable due to the ﬁge So specialized technigues
(e.g. sub-gradient) would hav

@ Some literature claims this primal cannot be easily kernelized -
which is not really true.
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