OVERSAMPLING: SMOTE
AYTUNCSBRMIEHRIB 1SR gy class

@ Interpolate between neighboring minority instances.

O
@ Instances ared:rﬁated in A’ ratherthanin A" x ). x O

| n;] 9 goapmq ?or eac% ?nln‘nrc])rllg gaiss instance: x x
Same Fnkils Kinebrast imortyridighbors.

@ Randomly select one of these neighbors.
@ Randomly generate new instances along the lines connecting
the minority example and TS &18 & Heighbor.

stand the state-of-art
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l SMOTE/GENERATING' NEW EXAMPLES
@ Letxtbe the feature of theminoritydnstance and let x'/) be its
» Nearest neighbor. The ling cqpnecqu the two,instances is
o okt A Axl) — k) 4 A(x U)o x()
o Whefre?)\f‘[O-ﬂ] h minority class instance
° By,safpplmg a (\ & 10,1}, say /\1 we preate a new instance
o Randomly seleq(ne ¢l 'l.s.,\(rxu)ux(‘))
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B SMOTE: VISUALIZATION

] Foranimbalanced data situation, take fourinstances of the:minarity
] classi ket =2 bedhelnumberof nearest neighbors:
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SMOTE: VISUALIZATION

For an imbalanced data situation, take four instances of the minority
class. Let K = 2 be the number of nearest neighbors.
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SMOTE: VISUALIZATION
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SMOTE: VISUALIZATION

For an imbalanced data situation, take four instances of the minority
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SMOTE: VISUALIZATION

For an imbalanced data situation, take four instances of the minority

class. Let K = 2 be the number of nearest neighbors.
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SMOTE: VISUALIZATION
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SMOTE: VISUALIZATION

For an imbalanced data situation, take four instances of the minority
class. Let K = 2 be the number of nearest neighbors.
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SMOTE: VISUALIZATION

For an imbalanced data situation, take four instances of the minority
class. Let K = 2 be the number of nearest neighbors.
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SMOTE: VISUALIZATION

For an imbalanced data situation, take four instances of the minority
class. Let K = 2 be the number of nearest neighbors.
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SMOTE: VISUALIZATION

For an imbalanced data situation, take four instances of the minority
class. Let K = 2 be the number of nearest neighbors.
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SMOTE: VISUALIZATION CONTINUED

After 100 iterations of SMOTE dor K= 2weget:
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SMOTE: VISUALIZATION CONTINUED
After 100 iterations of SMOTE for K = 3 we get:
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SMOTE: EXAMPLE 1 1O CONTINUED

AT IFig'dataset with 3elasses and 50 insfances per class.
@ Make the data set “imbalanced":

e relabel one class as positive
o relabel two other classes as negative n

SMOTEd iris Data [lc=5_)\l ?gMOTE'd iris Data (k=1)

Original iris Data I
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SMOTE enriches minority class feature space.
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SMOTE: DIS-/ADVANTAGES

o Generalize decision/region for minority-class instead of making it O O X
o Quite-specific, suchas by-random oversampling.
o Well-perdormed.among-the oversampling techniques and is the X O
basis for many oversampling metheds: Borderline-SMOTE,
LN-SMOTE, . .. (over 90 extensions!) X X
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COMPARISON OF SAMPLING TECHNIQUES

o Compare different sampling techniquesconca binarized version of
Optdigits dataset foroptical récognitiors of handwritten digits.
o Use random forestwith 100-trees; Sfoldicv.cand Fy<Seorels (he

e 1o TSR BinG 1oL WUR - Class ralle F1-S4076

Prone to N?ne! eralizing as it pays 1 011! tior 07923\% y class
Undersampling 0.68 0.9538
Oversampling 0.69 0.9538
SMOTE 0.79 0.9576

® Class ratios could be tuned (here done manually).
® Sampling techniques outperform base learner.

B O ) B . EmEm .
®

® SMOTE leads sampling techniques, although by a small margin.
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COMPARISON OF SAMPLING TECHNIQUES

@ Compare different sampling techniques on a binarized version of
Optdigits dataset for optical recognition of handwritten digits.

@ Use random forest with 100 trees, 5-fold cv, and F1-Score.

Sampling technique Class ratio F1-Score

None 0.11 0.9239
Undersampling 0.68 0.9538
Oversampling 0.69 0.9538
SMOTE 0.79 09576

@ Class ratios could be tuned (here done manually).
@ Sampling technigques outperform base learner.
@ SMOTE leads sampling techniques, although by a small margin.
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