SAMPLING METHODS: OVERVIEW - Balance training data distribution to perform better on minority classes. - Independent of classifier --- very flexible and general. # Im British Learning: ## Sampling Methods Part 1 - Undersampling Removing instances of majority class(es). - Oversampling Adding/Creating new als instances of minority class(es). (Slower idea of sampling but usually works better.) methods for common with paper of the pape - Hybrid Combining both methods.lanced data - Understand different undersampling describings #### BANDOM UNDERSAMPLING/OVERSAMPLING - Bandom oversampling (RQS): to perform better on minority classes. - Randomly replicate minority instances. Prone to overfitting due to multiple tied instances. Three groups: Random undersampling (RUS): - - Randomly eliminate majority instances. - Might remove informative instances and destroy important concepts in data - Better Introduce heuristics in removal process (RUS) and do not create exact cobies (ROS)ass(es). (Slower, but usually works better.) - Hybrid Combining both methods. #### UNDERSAMPLING: TOMEK LINKS SAMPLING - Remove noisy borderline examples (very close observations of different classes) of majority class(es) ninority instances. - Let Eft at (x(0), y(0)) land E(0) at (x(0), |y(0)|) be two data points in D. - Random undersampling (RUS): - A pair (E⁽¹⁾, E⁽¹⁾) is called *Tomek link* iff there is no other data point E^(k) (x^(k)) (x^(k)) such that destroy important characters in data. (x^(k), x^(k)) < d(x^(k), x^(k)) or - Bet#(x⁽ⁱ⁾, x⁽ⁱ⁾) | x⁽ⁱ⁾ x - y⁽ⁱ⁾ ≠ y^(j) → noisy borderline examples. - Remove majority instance in each data pair in a Tomek link where y⁽ⁱ⁾ ≠ y^(j). Franciso Herrera (2013), Imbalanced Classification: Common Approaches and Open Problems (URL). #### UNDERSAMPLING: OTHER APPROACHES - Neighborhood cleaning rule (NCL) very close observations of different close Find 3 nearest neighbors for each $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$ in \mathcal{D} . - Left y⁽ⁱ⁾ is majority class and 3-NN classifies it as minority → Remove (x⁽ⁱ⁾, y⁽ⁱ⁾) from D. - If y⁽ⁱ⁾ is minority class and 3-NN classifies it as majority --- - A pair (Remove) 3 nearest neighbors from D. - Condensed Nearest Neighbor (CNN): Construct a minimally consistent subset \(\tilde{D} \) of \(\tilde{D} \). One sided explantion (OSS): Tomak link a CNN. - One-sided selection (OSS): Tomek link + CNN - CNN + Tomek link: to reduce computation of finding Tomek links - → first use CNN and then remove the Tomek links. - Clustering approaches Class Purity Maximization (CPM) and Undersampling based on Clustering (SBC). Classification: Common Approach ### **UNDERSAMPLING: OTHER APPROACHES** - Neighborhood cleaning rule (NCL): - Find 3 nearest neighbors for each $(\mathbf{x}^{(i)}, y^{(i)})$ in \mathcal{D} . - If $y^{(i)}$ is majority class and 3-NN classifies it as minority \rightsquigarrow Remove $(\mathbf{x}^{(i)}, y^{(i)})$ from \mathcal{D} . - If $y^{(i)}$ is minority class and 3-NN classifies it as majority \rightsquigarrow Remove 3 nearest neighbors from \mathcal{D} . - Condensed Nearest Neighbor (CNN): Construct a **minimally** consistent subset $\tilde{\mathcal{D}}$ of \mathcal{D} . - One-sided selection (OSS): Tomek link + CNN - CNN + Tomek link: to reduce computation of finding Tomek links irst use CNN and then remove the Tomek links. - Clustering approaches: Class Purity Maximization (CPM) and Undersampling based on Clustering (SBC).