POSTERIOR PROCESS

@ Let us now distinguish between observed training inputs, also
denote by a design matrix X, and the corresponding observed

e f= [f (x®) .1 (x(”))]

and one single unobserved test point x, with f, = f(x.).
@ We now want to infer the distribution of £, |x,, X, f.

f.=f(x.)

@ Assuming a zero-mean GP prior GP (0, k(x, x")) we know

Here, K = (k (x(),x0))) . k. = [k (x..x") ...k (x..x(")]

and k,, = k(x,.x,).
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POSTERIOR PROCESS /2

@ Given that f is observed, we can apply the general rule for
condition (*) of Gaussian random variables and obtain the
following formula:

fole X f~ N (k'K ' k.. — kIKK.).

® As the posterior is a Gaussian, the maximum a-posteriori estimate,
i.e. the mode of the posterior distribution, is k] K~ 'f.
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POSTERIOR PROCESS /3

(*) General rule for condition of Gaussian random variables:

If the m-dimensional Gaussian vector z ~ Ny, L) can be partitioned
with z = (24, 22) where 2 is /my<dimensional-and 2;is
midimensional, and:

[Ly Ly
(1, p12) Z—(zm Ty )

then the conditioned distribution of z> | z; = a is a multivariate normal

.V\“‘ (‘[12 =+ 2212;‘1 (a - [{1). 222 - 221 2;11212)

]
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GP PREDICTION: TWO POINTS

Let us visualize this by a simple example: O 0O X
@ Assume we observed a single training point x = —0.5, and want to
make a prediction at a test point x, = 0.5. X O
@ Under a zero-mean GP with k(x, x’) = exp(—3|x — x'||?). we
compute the cov-matrix: X X

[ri] -0 [0.161 T 1])

@ Assume that we observe the point f(x) = 1.
® We compute the posterior distribution:

folx.xf ~ N(KkIK'f k.- kIKk.)
~ N(061-1-1,1-0.61-1-0.61)
~ N(0.61,0.6279)

@ The MAP-estimate for x, is f(x,) = 0.61, and the uncertainty
estimate is 0.6279.
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POSTERIOR PROCESS

@ We can generalize the formula for the posterior process for
multiple unobserved test points:

f. = [f (x(.')) Y (x(.m))] .

@ Under a zero-mean Gaussian process, we have

el <)

withK, = (k (x(‘), x‘.i)) )U, K.. = (k (x(.i), x‘.i)))i.j.
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POSTERIOR PROCESS /2

@ Similar to the single test point situation, to get the posterior
distribution, we exploit the general rule of conditioning for
Gaussians:

fo X X f~NK/K K. - K'K'K.).

® This formula enables us to talk about correlations among different
test points and sample functions from the posterior process.
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GP AS A SPATIAL MODEL

@ The correlation among two outputs depends on distance of the corresponding
input points x and x” (e.g. Gaussian covariance kernel

k(x.x') = exp ("W‘ﬁ) )
® Hence, close data points with high spatial similarity k(x. x") enter into more
strongly correlated predictions: k. K 'f (k. := (k(xA X)L k(xx'™ ))).

Xy

Example: Posterior mean of a GP that was fitted with the Gaussian covariance
kernelwith | = 1.

]
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GP AS A SPATIAL MODEL /2

@ Posterior uncertainty increases if the new data points are far from
the design points.

@ The uncertainty is minimal at the design points, since the posterior
variance is zero at these points.

Example (continued): Posterior variance.
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NOISY GAUSSIAN PROCESS /2

@ Inreality, however, this is often not the case.

@ We often only have access to a noisy version of the true function

value
y =f(x) +e.e~N(0,0%).

@ Let us still assume that f(x) is a Gaussian process.
@ Then,

Cov(y". y) = Cov (, (xm) 4+ W § (xm) *(w)

Cov (r (x“’) f (x“’)) +2. Cov (r (x“’) L) + Cov ((“’. )

k (x“). xU)) + ad;.

@ o2 is called nugget.
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m NOISY GAUSSIAN PROCESS /3

@ Let us now derive the predictive distribution for the case of noisy
observations.

@ The prior distribution of y, assuming that f is modeled by a
Gaussian process is then

y()

y@

y= ~N(m.K +d°1,),

with
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m NOISY GAUSSIAN PROCESS /4

@ We distinguish again between

e observed training points X, y, and
- @ unobserved test inputs X. with unobserved values f.

and get

vl s [K+0% K
I AR )}
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NOISY GAUSSIAN PROCESS /s

@ Similarly to the noise-free case, we condition according to the rule
of conditioning for Gaussians to get the posterior distribution for
the test outputs f. at X.:

fo | Xo X, ¥ ~ N(Myoet, Koget)-

with

Myosr = K (K+02-1) 'y

Kpos' == K.: - KI (K -+ 02 . I)_1 K:,

@ This converts back to the noise-free formula if 02 = 0.
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NOISY GAUSSIAN PROCESS /s

@ The noisy Gaussian process is not an interpolator any more.

@ A larger nugget term leads to a wider “band” around the observed
training points.

@ The nugget term is estimated during training.

6
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After cbserving the raining points red), we have a nugget-band arcund the cberved points
K{xx) & the squared exponertal)
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RISK MINIMIZATION FOR GAUSSIAN PROCESSES

In machine learning, we learned about risk minimization. We usually
choose a loss function and minimize the empirical risk

Raro():= 3L (0.1 ()

i=1

as an approximation to the theoretical risk

R(1) = B [L(y, 100)] = [ L(y. () Py

@ How does the theory of Gaussian processes fit into this theory?

@ What if we want to make a prediction which is optimal w.r.t. a
certain loss function?
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RISK MINIMIZATION FOR GAUSSIAN PROCESSES

/2

® The theory of Gaussian process gives us a posterior distribution

ply | D)

@ If we now want to make a prediction at a test point x. ., we
approximate the theoretical risk in a different way, by using the
posterior distribution:

R(y. x.)z/L(}'..y.)p(P. | x., D)dj..
@ The optimal prediciton w.r.t the loss function is then:

V. |x. = argminR(y. | x.).
Ve
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