COVARIANCE FUNCTION OF A GP

The marginalization property of the Gaussian process implies that for
any finite set of input values, the corresponding vector of function
values is Gaussian:

® The covariance matrix K is constructed based on the chosen
inputs {x("), . x(™}.

@ Entry K is computted by &k (x(7), x()).

@ Technically, for every choice of inputs {x("), ... x("} K needs to
be positive semi-definite in order to be a valid covariance matrix.

@ A function k(.,.) satisfying this property is called positive definite.
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COVARIANCE FUNCTION OF AGP /2

@ Recall, the purpose of the covariance function is to control to
which degree the following is fulfilled:

If two points x(/), x(/) are close in A'-space, their function
values f(x()), f(x/)) should be close (correlated!) in
Y-space.

@ Closeness of two points x("), x\/) in input space X’ is measured in
terms of d = x() — x():

k(x) x1) = k(d)
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COMMONLY USED COVARIANCE FUNCTIONS /2
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@ Random functions drawn from Gaussian processes with a Squared Exponential
Kernel (left), Polynomial Kernel (middle), and a Matérn Kernel (right, £ = 1).

@ The length-scale hyperparameter determines the “wiggliness™ of the function.
@ For Matérn, the i» parameter determines how differentiable the process is.

]
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CHARACTERISTIC LENGTH-SCALE /2

For p = 2 dimensions, the squared exponential can be parameterized:
' 1 T '
k(x,x") = exp (—E(x— X) M(x—x))
Possible choices for the matrix M include

M; =(2] M,=diag(£)? M;=T1T" +diag(¢)>

where £ is a p-vector of positive values and I isa p x k matrix.

The 2nd (and most important) case can also be written as

K(d) = exp (_% 3 %)

j=1 1
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CHARACTERISTIC LENGTH-SCALE /3

What is the benefit of having an individual hyperparameter ¢, for each
dimension?

® The /4, ..., [, hyperparameters play the role of characteristic
length-scales.

@ Loosely speaking, /; describes how far you need to move along
axis i in input space for the function values to be uncorrelated.

@ Such a covariance function implements automatic relevance
determination (ARD), since the inverse of the length-scale #;
determines the relevancy of input feature i to the regression.

o If£;is very large, the covariance will become almost independent
of that input, effectively removing it from inference.

@ If the features are on different scales, the data can be
automatically rescaled by estimating /4, .../,
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m CHARACTERISTIC LENGTH-SCALE /4
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For the first plot, we have chosen M = [: the function varies the same
in all directions. The second plot is for M = diag(£) 2 and £ = (1,3):
The function varies less rapidly as a function of x, than x; as the
length-scale for x; is less. In the third plot M = I'TT + diag(¢) 2 for
= (1,—1)" and £ = (6,6) . Here I gives the direction of the most
rapid variation. (Image from Rasmussen & Williams, 2006)
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