Introduction to Machine Learning

Feature Selection: Motivating Examples

Feature Selection: Motivating Examples

Learning goals

Understand the practical

importance of feature selection **Learning goals**

- Understand that models with
 - Understand the practical importance of feature selection
- Understand that models with integrated selection do not always work
- Know different categories of selection methods

MOTIVATING EXAMPLE 1: REGULARIZATION /2

 Boxplots show the relative test error (RTE = test error/Bayes error σ²) over 100 simulations for the different values of p and λ.

- Lowest RTE is obtained at λ = 0.001 for p = 20, at λ = 100 for p = 100, and at λ = 100 for p = 100.
- Optimal amount of regularization increases monotonically in p here.
- High-dimensional settings require more complexity control through regularization or feature selection.

MOTIVATING EX. 3: INTEGRATED SELECTION /2

- We compare several classifiers regarding their misclassification rate, of which two have integrated FS (rpart and rForest).
- Since we have few observations, we use repeated 10-fold cross-validation with 10 repetitions.

	rpart	lda	logreg	nBayes	knn7	rForest
all feat.	0.44	0.27	0.25	0.32	0.37	0.36
relevant feat.	0.44	0.18	0.19	0.27	0.33	0.30

- ⇒ Different to Ex. 2, models with integrated FS do not work ideally here. Also, methods with lin. decision boundary are better due to our simulation set-up.
- ⇒ Performance improves significantly for most methods when only trained on informative features.

