Introduction to Machine Learning

Feature Selection
Feature Selection: Filter Methods

Learning goals

@ Understand how filter methods work
and how to apply them for feature
selection.

@ Know filter methods based on
correlation, test statistics, and mutual
information.



INTRODUCTION
O0OX

@ Filter methods construct a measure that quantifies the

dependency between features and the target variable X O
® They yield a numerical score for each feature x;, according to
which we rank the features X X

@ They are model-agnostic and can be applied generically
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Exemplary filter score ranking for Spam data
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m PEARSON & SPEARMAN CORRELATION ;2

Only linear dependency structure, non-linear (non-monotonic) aspects
are not captured:
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Comparison of Pearson comelation for different dependency structures.

To assess strength of non-linear/non-monotonic dependencies,
generalizations such as distance correlation can be used.
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MUTUAL INFORMATION (M)
p(X.Y) ]
06 Y) = Bt [ p(X)p(Y)
@ Each feature x; is rated according to /(x;; y ); this is sometimes
called information gain

@ MI measures the amount of "dependence" between RV by looking
how different their joint dist. is from strict independence p(X)p(Y).

@ Mlis zero iff X L Y. Onthe other hand, if X is a deterministic
function of Y or vice versa, Ml becomes maximal

@ Unlike correlation, Ml is defined for both numeric and categorical
variables and provides a more general measure of dependence

@ To estimate MI: for discrete features, use observed frequencies:; for
continuous feattres, binning, kerneldensity estimationis used
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