CURSE OF DIMENSIONALITY: EXAMPLE /2
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Based on the frequency of exclamation marks, we train a very simple
classifier (a decision stump with split point x = 0.25):

@ We divide the input space into 2 equally sized regions.

@ Inthe second region [0.25, 0.5], 7 out of 10 are spam.

@ Given that at least 0.25% of all letters are exclamation marks, an
email is spam with a probability of -5 = 0.7.
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m CURSE OF DIMENSIONALITY: EXAMPLE /3

Let us feed more information into our classifier. We include a feature
that contains the length of the longest sequence of capital letters.
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@ Inthe 1D case we had 20 observations across 2 regions.
@ The same number is now spread across 4 regions.
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m CURSE OF DIMENSIONALITY: EXAMPLE /4

Let us further increase the dimensionality to 3 by using the frequency of O 0O X
the word “your”" in an email.
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CURSE OF DIMENSIONALITY: EXAMPLE /5

@ When adding a third dimension, the same number of observations
is spread across 8 regions.

@ In 4 dimensions the data points are spread across 16 cells, in 5
dimensions across 32 cells and so on ...

@ As dimensionality increases, the data become sparse; some of
the cells become empty.

@ There might be too few data in each of the blocks to understand
the distribution of the data and to model it.
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Bishop, Pattern Recognition and Machine Leaming, 2006
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THE HIGH-DIMENSIONAL CUBE /2

Eage ength of cube
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@ So: covering 10% of total volume in a cell requires cells with
almost 50% of the entire range in 3 dimensions, 80% in 10
dimensions.
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m THE HIGH-DIMENSIONAL SPHERE /2

Consider a 20-dimensional sphere. Nearly all of the volume lies in its
outer shell of thickness 0.2:
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m HYPHERSPHERE WITHIN HYPERCUBE /2

Consider a 10-dimensional sphere inscribed in a 10-dimensional cube.
Nearly all of the volume lies in the corners of the cube:

Volume fraction S.(r)/C.(r)
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Note: For r > 0, the volume fraction %‘% isindependent of .

r
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GAUSSIANS IN HIGH DIMENSIONS

A further manifestation of the curse of dimensionality appears if we
consider a standard Gaussian Ny(0, I5) in p dimensions.

@ After transforming from Cartesian to polar coordinates and
integrating out the directional variables, we obtain an expression
for the density p(r) as a function of the radius r (i.e., the point's
distance from the origin), s.t.

(r) = SprP~! o r?
Ar) = (2mo2)p/2 Pl 2:2)
where S, is the surface area of the p-dimensional unit

hypersphere.

@ Thus p(r)dr is the approximate probability mass inside a thin shell
of thickness dr located at radius r.
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m GAUSSIANS IN HIGH DIMENSIONS /2

@ To verify this functional relationship empirically, we draw 10* points
from the p-dimensional standard normal distribution and plot p(r)
over the histogram of the points’ distances to the origin:
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@ We can see that for large p the probability mass of the Gaussian is
concentrated in a fairly thin “shell” rather far away from the origin.

This may seem counterintuitive, but:
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GAUSSIANS IN HIGH DIMENSIONS /3

@ For the probability mass of a hyperspherical shell it follows that
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where f,(x) is the density of the p-dimensional standard normal x x
distribution and p(r) the associated radial density.

density
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Example: 2D normal distribution

@ While f, becomes smaller with increasing r, the region of the
integral -the hyperspherical shell- becomes bigger.
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