EXAMPLE: K-NN /2

Minimal, mean and maximal (NN)-distances of 10* points uniformly

distributed in the hypercube [0, 1]°:

P mind(x.X) d(x,X) maxd(x,X) dyyi(x) maxdyyi(x)
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1.2e-08
0.00011
0.0021
0.016
0.15
0.55
1.5
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0.33
0.52
0.66
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9.1
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5e-05
0.0051
0.026
0.11
0.39

0.9
2
3.2
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0.00042
0.02
0.073
0.23
0.63
1.2
24
3.5
8.6
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EXAMPLE: K-NN /3
We see a decrease of relative contrast' ¢ := "‘”“"‘:\f‘x)();(:f;“)‘)"""i” and

“locality"® | := L"‘i‘ﬁ"ﬂ with increasing number of dimensions p:
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'[Aggarwal et al., 2001]
2our non-standard definition
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EXAMPLE: K-NN /2

To demonstrate this, we generate an artificial data set of dimension p
as follows: We define a = 72,5 and

@ with probability ; we generate a sample from class 1 by sampling
from a Gaussian with mean g = (a, a, ..., @) and unit covariance
matrix

@ with probability ; we generate a sample from class 2 by sampling
from a Gaussian with mean —p¢ = (—a, —a, ..., —a) and unit
covariance matrix
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EXAMPLE: K-NN /3

Dimension p = 1
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EXAMPLE: K-NN /4

This example is constructed such that the Bayes error is always
constant and does not depend on the dimension p.

The Bayes optimal classifiers predicts y = 1 iff

pix|y=1Py=1) 1 px|ly=1)

Ply=1lx) = o) Z o
1 plxly=2)
o2 p(x)
pix|y=2)P(y=2)
= 00 =P (y=2|x).

This is equivalent to
a 1 T ) 1 .
=t e e (cp0em ) z e (<30en (cm)

= x_;: = 0.
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m EXAMPLE: K-NN /s
Optimal Bayes classifier and Bayes error (shaded area): O O x

Dimensionp = 1 Dimension p = 2
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EXAMPLE: K-NN /6

We can calculate the corresponding expected misclassification error
(Bayes error)

p(y=1ly=2)P(y=2)+p(y =2|y=1)P(y=1)
1 - 1, -
= S Pxpz0ly=2)+7 px p<0|y=1)
P
= op(x pSOIY=1)=p(Zax.SOIY=1)
(|
P
= p(Zx,§0|y=1).
J=1
P xy=1~N(p-a, p),because itis the sum of independent

normal random variables x; | y = 1 ~ N '(a, 1) (the vectorx | y = 1
follows a N (g, I) distribution with pp = (a, ..., a)).
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EXAMPLE: K-NN /7
We get for the Bayes error:

>P x—p-a_—p-a
- p( '_1\/1-7 : VP |y=1)
2
— VP

— o(—pa) =" &(—2) ~0.0228,

where @ is the distribution function of a standard normal random
variable.

We see that the Bayes error is independent of p.
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EXAMPLE: K-NN /s

We also train a k-NN classifier for k = 3,7, 15 for increasing
dimensions and monitor its performance (evaluated by 10 times
repeated 10-fold CV).
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—» k-NN deteriorates quickly with increasing dimension

]
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m EXAMPLE: LINEAR MODEL /2
We compare the performance of an LM to that of a regression tree. O O x

@
=
S

Learner
i X X

regr rpart

Mean Squared Ermror
bt s .

_’_‘—’_'_’-.
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Number of noise variables

—» The unregularized LM struggles with the added noise features, while
our tree seems to nicely filter them out.

Note: Trees automatically perform feature selection as only one feature at atime is
considered for splitting (the smaller the depth of the tree, the less features are
selected). Thus, they often perform well in high-dimensional settings.
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m EXAMPLE: LINEAR MODEL /3

@ The regression coefficients of the noise features can not be
estimated precisely as zero in the unregularized LM due to small
random correlations.

@ With an increasing number of these noise features, the prediction
error rises.

@ To see this, we can quantify the influence of the noise features on
the prediction of each observation.

Therefore we decompose the response y) of each iterations’ test
setinto j/éi)e (predicted with noise features set to 0) and j/,(x',),se
(predicted with true features set to 0), s.t.
i) = y'(r'ge + 9§2m + intercept.
With this, we can define the “average proportional influence of the
noise features” x := (—IT'Z;&{—)—)

[ Yorve | +1¥ncisel
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EXAMPLE: LINEAR MODEL /4

ovs

100 200 aco 400
Number of noise features added

When we add 400 noise features to the model, most of the time, on
average, over 50% of the flexible part of the prediction (') — intercept)
is determined by the noise features.

]
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