Minimal, mean and maximal (NN)-distances of 10^4 points uniformly distributed in the hypercube $[0, 1]^p$:

p	$\min d(\mathbf{x}, \widetilde{\mathbf{x}})$	$\overline{d(\mathbf{x},\widetilde{\mathbf{x}})}$	$\max d(\mathbf{x}, \widetilde{\mathbf{x}})$	$\overline{d_{NN1}(\mathbf{x})}$	$\max d_{NN1}(\mathbf{x})$
1	1.2e-08	0.33	1	5e-05	0.00042
2	0.00011	0.52	1.4	0.0051	0.02
3	0.0021	0.66	1.7	0.026	0.073
5	0.016	0.88	2	0.11	0.23
10	0.15	1.3	2.5	0.39	0.63
20	0.55	1.8	3	0.9	1.2
50	1.5	2.9	4.1	2	2.4
100	2.7	4.1	5.4	3.2	3.5
500	7.8	9.1	10	8.2	8.6

We see a decrease of relative contrast¹ $c := \frac{\max(d(\mathbf{x}, \tilde{\mathbf{x}})) - \min(d(\mathbf{x}, \tilde{\mathbf{x}}))}{\max(d(\mathbf{x}, \tilde{\mathbf{x}}))}$ and "locality" $l := \frac{\overline{d(\mathbf{x}, \tilde{\mathbf{x}}) - \overline{d_{NN1}(\mathbf{x})}}}{d(\mathbf{x}, \tilde{\mathbf{x}})}$ with increasing number of dimensions p:

[[]Aggarwal et al., 2001]

²our non-standard definition

To demonstrate this, we generate an artificial data set of dimension p as follows: We define $a=\frac{2}{\sqrt{p}}$ and

- with probability $\frac{1}{2}$ we generate a sample from class 1 by sampling from a Gaussian with mean $\mu=(a,a,...,a)$ and unit covariance matrix
- with probability $\frac{1}{2}$ we generate a sample from class 2 by sampling from a Gaussian with mean $-\mu = (-a, -a, ..., -a)$ and unit covariance matrix

This example is constructed such that the Bayes error is always constant and does not depend on the dimension p.

The Bayes optimal classifiers predicts $\hat{y} = 1$ iff

$$\mathbb{P}(y=1 \mid \mathbf{x}) = \frac{\rho(\mathbf{x} \mid y=1)\mathbb{P}(y=1)}{\rho(\mathbf{x})} = \frac{1}{2} \cdot \frac{\rho(\mathbf{x} \mid y=1)}{\rho(\mathbf{x})}$$

$$\geq \frac{1}{2} \cdot \frac{\rho(\mathbf{x} \mid y=2)}{\rho(\mathbf{x})}$$

$$= \frac{\rho(\mathbf{x} \mid y=2)\mathbb{P}(y=2)}{\rho(\mathbf{x})} = \mathbb{P}(y=2 \mid \mathbf{x}).$$

This is equivalent to

$$\hat{y} = 1 \quad \Leftrightarrow \quad \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top}(\mathbf{x} - \boldsymbol{\mu})\right) \ge \exp\left(-\frac{1}{2}(\mathbf{x} + \boldsymbol{\mu})^{\top}(\mathbf{x} + \boldsymbol{\mu})\right)$$
$$\Leftrightarrow \quad \mathbf{x}^{\top}\boldsymbol{\mu} \ge 0.$$

Optimal Bayes classifier and Bayes error (shaded area):

We can calculate the corresponding expected misclassification error (Bayes error)

$$\begin{split} & \rho(\hat{y} = 1 \mid y = 2) \mathbb{P}(y = 2) + \rho(\hat{y} = 2 \mid y = 1) \mathbb{P}(y = 1) \\ & = \quad \frac{1}{2} \cdot \rho(\mathbf{x}^{\top} \boldsymbol{\mu} \ge 0 \mid y = 2) + \frac{1}{2} \cdot \rho(\mathbf{x}^{\top} \boldsymbol{\mu} \le 0 \mid y = 1) \\ & \stackrel{\text{symm.}}{=} \quad \rho(\mathbf{x}^{\top} \boldsymbol{\mu} \le 0 \mid y = 1) = \rho\left(\sum_{i=1}^{p} a\mathbf{x}_{i} \le 0 \mid y = 1\right) \\ & = \quad \rho\left(\sum_{i=1}^{p} \mathbf{x}_{i} \le 0 \mid y = 1\right). \end{split}$$

 $\sum_{i=1}^{p} \mathbf{x}_{i} \mid y=1 \sim \mathcal{N}(p \cdot a, \ p)$, because it is the sum of independent normal random variables $\mathbf{x}_{i} \mid y=1 \sim \mathcal{N}\left(a,1\right)$ (the vector $\mathbf{x} \mid y=1$ follows a $\mathcal{N}\left(\boldsymbol{\mu},\boldsymbol{I}\right)$ distribution with $\boldsymbol{\mu}=\left(a,...,a\right)$).

We get for the Bayes error:

$$= \rho\left(\frac{\sum_{i=1}^{p} \mathbf{x}_{i} - p \cdot a}{\sqrt{p}} \le \frac{-p \cdot a}{\sqrt{p}} \mid y = 1\right)$$
$$= \Phi(-\sqrt{p}a) \stackrel{a = \frac{2}{\sqrt{p}}}{=} \Phi(-2) \approx 0.0228,$$

We see that the Bayes error is independent of p.

We also train a k-NN classifier for k=3,7,15 for increasing dimensions and monitor its performance (evaluated by 10 times repeated 10-fold CV).

× ×

ightarrow k-NN deteriorates quickly with increasing dimension

EXAMPLE: LINEAR MODEL /2

We compare the performance of an LM to that of a regression tree.

 \rightarrow The unregularized LM struggles with the added noise features, while our tree seems to nicely filter them out.

Note: Trees automatically perform feature selection as only one feature at a time is considered for splitting (the smaller the depth of the tree, the less features are selected). Thus, they often perform well in high-dimensional settings.

EXAMPLE: LINEAR MODEL /3

- The regression coefficients of the noise features can not be estimated precisely as zero in the unregularized LM due to small random correlations.
- With an increasing number of these noise features, the prediction error rises.
- To see this, we can quantify the influence of the noise features on the prediction of each observation.
 Therefore we decompose the response ŷ⁽ⁱ⁾ of each iterations' test

set into $\hat{y}_{\text{true}}^{(i)}$ (predicted with noise features set to 0) and $\hat{y}_{\text{noise}}^{(i)}$ (predicted with true features set to 0), s.t.

$$\hat{y}^{(i)} = \hat{y}_{\text{true}}^{(i)} + \hat{y}_{\text{noise}}^{(i)} + \text{intercept.}$$

With this, we can define the "average proportional influence of the

$$\text{noise features" } \kappa := \overline{\left(\frac{|\hat{y}_{\text{noise}}^{(i)}|}{|\hat{y}_{\text{true}}^{(i)}| + |\hat{y}_{\text{noise}}^{(i)}|}\right)}.$$

EXAMPLE: LINEAR MODEL / 4

When we add 400 noise features to the model, most of the time, on average, over 50% of the flexible part of the prediction $(\hat{y}^{(i)} - \text{intercept})$ is determined by the noise features.