
Introduction to Machine Learning

Boosting Boosting: XGBoost

Gradient Boosting: XGBoost

Learning goals

- Overview over XGB
- Regularization in XGB

Learning goalsplit finding

- Overview over XGB
- Regularization in XGB
- Approximate split finding

SUBSAMPLING

Data Subsampling: XGB uses stochastic GB.

Feature Subsampling: Similar to mtry in a random forest only a random subset of features is used for split finding.

The fraction of features for a split can be randomly sampled for each

- tree
- level of a tree
- split

Feature subsampling speeds up training even further and can create a more diverse ensemble that often performs better.

OVERVIEW OF IMPORTANT HYPERPARAMETERS

HP (as named in software)	Type	Typical Range	Trafo	Default	Description
eta	R	[-4,0]	10 ^N	0.3	learning rate (also called \(\nu\)) shrinks contribution of each boosting update
nrounds	1	{1,,5000}	-	-	number of boosting iterations. Can also be optimized with early stop- ping.
gama	R	[-7, 6]	2*	0	minimum loss reduction required to make a further partition on a leaf node of the tree
max_depth	1	{1, , 20}	-	6	maximum depth of a tree
colsample_bytree	R	{1, , 20} [0.1, 1]	-	1	subsample ratio of columns for each tree
colsample_bylevel	R	[0.1, 1]	-	1	subsample ratio of columns for each depth level
lambda	R	[-10.10]	2^{κ}	1	L2 regularization term on weights
alpha	R	[-10, 10] [-10, 10] [0.1, 1]	2^{κ}	0	L1 regularization term on weights
subsample	R	[0.1, 1]	-	1	subsample ratio of the training in- stances

