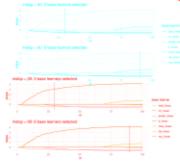
## Introduction to Machine Learning

# **Boosting** Boosting: CWB Basics 2

**Gradient Boosting: CWB Basics 2** 



#### Learning goals

- Handling of categorical features
- Intercept handling
- Learning goals
  - Handling of categorical features
  - Intercept handling
  - Practical example



## HANDLING OF CATEGORICAL FEATURES /2

Advantages of simultaneously handling all categories in CWB:

- Much faster estimation compared to using individual binary BLs
- Explicit solution of  $\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^G} \sum_{i=1}^n (y^{(i)} b_j(x_j^{(i)}|\theta))^2$ :

$$\hat{\theta}_g = n_g^{-1} \sum_{i=1}^n y^{(i)} \mathbb{1}_{\{x_j^{(i)} = g\}}$$

For features with many categories we usually add a ridge penalty



## HANDLING OF CATEGORICAL FEATURES /3

Advantages of including categories individually in CWB:

- Enables finer selection since non-informative categories are simply not included in the model.
- Explicit solution of  $\hat{\theta}_{j,g} = \arg\min_{\theta \in \mathbb{R}} \sum_{i=1}^{n} (y^{(i)} b_g(x_j^{(i)} | \theta))^2$  with:

$$\hat{\theta}_{j,g} = n_g^{-1} \sum_{i=1}^n y^{(i)} \mathbb{1}_{\{x_j^{(i)} = g\}}$$

Disadvantage of individually handling all categories in CWB:

- Fitting CWB is slower
- Penalization and selection become difficult since base learner has exactly one degree of freedom.



### INTERCEPT HANDLING

There are two options to handle the intercept in CWB. In both, the loss-optimal constant  $f^{[0]}(\mathbf{x})$  is an initial model intercept.

- Include an intercept BL:
  - Add BL b<sub>int</sub> = θ as potential candidate considered in each iteration and remove intercept from all linear BLs, i.e., b<sub>i</sub>(x) = θ<sub>i</sub>x<sub>i</sub>.
  - Final intercept is given as f<sup>[0]</sup>(x) + θ̂. Linear BLs without intercept only
    make sense if covariates are centered (see historial, p. 7)
- Include intercept in each linear BL and aggregate into global intercept post-hoc:
  - Assume linear base learners  $b_j(\mathbf{x}) = \theta_{j1} + \theta_{j2}x_j$ . If base learner  $\hat{b}_j$  with parameter  $\hat{\theta}^{[1]} = (\hat{\theta}_{j1}^{[1]}, \hat{\theta}_{j1}^{[1]})$  is selected in first iteration, model intercept is updated to  $f^{[0]}(\mathbf{x}) + \hat{\theta}_{j1}^{[1]}$ .
  - During training, intercept is adjusted M times to yield  $f^{[0]}(\mathbf{x}) + \sum\limits_{m=1}^{M} \hat{\theta}_{j1}^{[m]}$



### EXAMPLE: LIFE EXPECTANCY

We fit a CWB model with linear BLs (with intercept)

| variable        | description                                                                     |
|-----------------|---------------------------------------------------------------------------------|
| Life.expectancy | Life expectancy in years                                                        |
| Country         | The country (just a selection GER, USE, SWE, ZAF, and ETH)                      |
| Year            | The recorded year                                                               |
| BMI             | Average BMI = bodyweight in kg/(Height in m) <sup>2</sup> in a year and country |
| Adult.Mortality | Adult mortality rates per 1000 population                                       |

