Introduction to Machine Learning

| Advanced Risk=Minimization
I Risk Minimizers

Learning goals
@ Bayes optimal model (also: risk
minimizer, population minimizer)
@ Bayes risk

@ Bayes regret, estimation and
approximation error

@ Optimal constant model

| @ Consistent learners



EMPIRICAL RISK MINIMIZATION

Very often, in ML, we minimize the empirical risk
n
=N (i) ()
Rere(f) = L1 061))

1@ gach observation (x!'), y[)) € X x ), so from feature and target space

® fin.5t 52 R, Lis @ model from hypothesis space H: maps a feature,

vector to output score; somet'}mgs or often we omit H in the index
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SR =Bty 1 16 16) aps

What is the theoretical justi

oe

ST

Itroducton to Machine Learning - 1/13

O0X

X X



TWO SHORT'EXAMPLES

Begressionwith linear'model: O O x
@ Model: f(x) = 68"x + “
o Squaredloss: Ly, f)=t(y/xpf— [ Ly 1x)d X O
or® Hypo}pgslﬁspacg f(x) € Handaloss L(y, f(x)) x x

Hin = {XHBTx+HO:GEE’.Ho :&'}
Let us assume we are in an “ideal world
Binary classification with shallowMUP:c e can choose any
@ Model: f(x) = m(x) = o(w,) ReLU(Wx + by) + b,)
™ B{nayycross‘gmropy]osg;mw imizer; the risk minimization ca
Ly = so(yloglry ¢! FecyYlog(1ly. 7))
® Hypothesis space:

O LS AW ReLU(W x + by) + b,) - W, € BM9 b, € RN w, € BN b, € )
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OPTIMALICONSTANTS FOR A LOSS

The Le‘f’é dééﬁﬁﬁé‘ébﬁ\é RV 2 ,:_-':Hyufdriaqaﬂép: functions is called the

1156 DROTRE), BRBALRE We WANTTS fitdie Wil it diS Bl AR !
@ Assume z has distributionQ, so z ~ Q
o/ Wecamnow consider arg niin, Brzait(z.c)]- =0 L1y f(x)]
so the score-constant w/«hifh‘ylo“sjsiminimally approximates z

We will consider 3 cases for Q

TH® Q.7iFy: simply ourlabels and their marginal distribution in I
® Q= P, conditional label distribution at point x = X
® Q = Py, the empirical product distribution for data ys, .. ., Yn

If we can solve argmin_ E,_q[L(z, ¢)] for any Q, we will get multiple
useful results!
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OPTIMAL CONSTANT MODEL_ 11 ONS

ToeldNe wobld ikelatoss optimal (dosstant baseline predictar of olal expectation O O x
o ‘teatureles ML model whnch aIVﬂays predlcts the samxevalu?( "
@ Can'use it as baseling’in expenments |fwe don' beat this with more complex x O
o modelzthatimadetis useless we want (unrestricted hypothesis space
o Wlla!sabe‘vsefulas‘wmdonant‘in algorithms and derivations x X
® Hence, fora alue A we can select any valu '

to predfgt=S arg mm L»,,J‘{L(y* c)f})eﬂurg/mmww_(lyec)] »

f |
and f(x)=460= c thatoptlmlzes the empmcal nsk \m.p(B) |s denoted as as
c = lafgmin. L Rain(0).

»"eS

]
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OPTIMAL CONSTANTMODEL" . HISK

The iy S SEARIWIEH 1B Wil 81 €aise Eb s O 0O X
) Aridwe wamo fnd anu optimél constant model for that
we can efficiently search over it x O
® Inpractice we (us “5rg‘MihiEpﬂ(izz‘-‘c)]= stead of R(f), we are
optimizing the empirical risk x x

argmin E[(z-c¢)’] =
argmin E[2%] — 2¢E[2] + ¢
arg n Rems(f) = g4 > oLy r(x))
N qsmg Q5 3T 1PY' th'ﬁ m?ﬁ%‘(‘ﬂ‘r&"ﬁﬂﬂﬁ&%"w th? |§be| mpiric

risk (distribution, the best constant is, ¢ = ElWky e iring)) -
o Ifwe only have data y4, ...y,

arg min th (z~ clz] =E,.p, [z] Z y(f) _
' (

[y f (%)) 1=
® And we want to flncfand opn mal constant model for
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RISKIMINIMIZERD APPROXIMATION ERROR

Goal of learning: Train a model f for which the true risk R, ( f ) is
Letus assume we are inanifideabworld™s we want the Bayes regret
® The hypothesis space H = Ha is unrestricted. We can choose

any measurable f : X' —/RI./| 1,

e We @j,’s_o(%ymgﬁ_n ideal optimizer; the risk minimization can
always be solved perfectly and efficiently.

e MQ»&OQ?(:H&‘QA,;@[' be decomposed as follows:

How should f be chosen?

__ [
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RISKIMINIMIZER2APPROXIMATION ERROR /2

The f with minimal risk across all (measurable) functions is called the
risk minimizer, population minimizer or Bayes optimal model.

fn,, = "argmin R(f) = argminkE, [L (y.f(x))]

feHan EHas
= arg min /L(y, f(x))dPy,.

The resulting risk is called Bayes risk: R* = R(f}, )

I I

@ R, |[f) f R(f) is the estimation error. We fit f via
Note that if we leave out the hypoﬁhesls spagce inthe ;ﬂJbW iptit
becomﬁ glear fromythe context! . o1 find e > optimal f

Snmllarly we def;ne the nsk mnmmlzer over some H C. 7—(‘#, as,
pprommatlon error

restricttoa | ‘[_u'? esis space which might not even contain the

Bayes optimal rif}*{ = argmin R(f)
feH
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OPTIMAL POINT-WISE PREDICTIONS = 5

&qew@m risk minimizer, observe that by law of total expectation.
S REA O EY Ly FExYF = Ee ENGEY () 1] -

unllmltcd data
@ We can choose f(x) as we want (unrestricted hypothesis space,

no assumed fuqctnonal forp)
o Hence, for a fixed value X & 1 we can sel t any value cwe want
' to predlct éo we construct ﬁne polnt-wlse optlmlzer

The learning methof (X} z-atgmin: Egpdibese)d xi=aXJer tail
listiip P Fix sndk (€ risk of the estimalqq (padgy bregverges i
probability ( “—") 4o the Bayes risk X~ when fyain goggtooc: @
R. "‘zwﬁ‘dml‘. =, for Nyain — oG U
- ! — » 0° ’_ . -
o o® & o @ &

e )

x o=

X

]
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THEORETICAL AND EMPIRICALRISK= & -

The risk-minimizeris.mainly a theoretical 100l o 1* . But since we
vsealn practicé weneed to restrictthe hypothesiscspace! Hisuchithat
‘hoowe can efficientlyosearchiovern it.a sk

@ In practice we (usually) do not know [Py, Instead of R(f), we are
“"‘—‘dbﬂn‘ﬁiihglﬁe'émplﬂc‘al'HSk‘" >ept of universal consistency: Ar

algorithm is universally consistent if it is consistent for any distributior
O n

B f ’= ar gmih\ !) ‘e arg mlnz (y“) 1 (S(M)}

consister YERC 2rag Vas prover

Many other I, L models have since then been proven to be universally
Note that -aqoordingtqnbek law of large numbers (LLN), the empirical
risk converges to the true risk (but beware of oveffitting!):

Note that universal consistency is obviously a desirable property
however, (universal) 1r sistency doe ell us anything about
,Rm(f) “>L (y"’ f(x"))) 2 R().
=1
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ESTIMATION AND'APPROXIMATION ERROR

Goal of learhing: Train & model fy; forwhich:the truerisic®R.(fy ) is: O 0O X
Blose o the Bayes sk R * Ihothet words  we want the Bayes regret
oF excess risk pirical lower baseline solutior x O

The constant model is the mode) f(x) A hat optimizes the empirical
isk R (6) R (i) -® X X

to be as low as possible.

The Bayes regret can be decemposed as follows:

F %
R (fH) -R:= [R (IH) _.LLQ'L'.R(I)] + [,‘f‘L R(f) - R ]
estimation &rror mprm:m;on eror

[R(h) — R(f)| + [R(G) — R(f,)
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