Introduction to Machine Learning

Advanced Risk Minimization 1 loss

Regression Losses: L2 and L1 loss

Learning goals

Derive the risk minimizer of the
 None

Learning goals

- Derive the optimal constant
 - Derive the risk minimizer of the L2-loss
 - Know risk minimizer and optima
 - Derive the optimal constant model for the L2-loss
 - Know risk minimizer and optimal constant model for L1-loss

L2-LOSS: OPTIMAL CONSTANT MODEL /2

The optimizer \hat{f}_c of the empirical risk is \bar{y} (the empirical mean over $y^{(i)}$), which is the empirical estimate for $\mathbb{E}_y[y]$.

L2-LOSS: OPTIMAL CONSTANT MODEL /3

Proof:

For the optimal constant model f_c^* for the L2-loss $L(y, f) = (y - f)^2$ we solve the optimization problem

$$\underset{f \in \mathcal{H}}{\arg\min} \, \mathcal{R}_{\text{emp}}(f) = \underset{\theta \in \mathbb{R}}{\arg\min} \, \sum_{i=1}^{n} (y^{(i)} - \theta)^{2}.$$

We calculate the first derivative of \mathcal{R}_{emp} w.r.t. θ and set it to 0:

$$\frac{\partial \mathcal{R}_{emp}(\theta)}{\partial \theta} = -2 \sum_{i=1}^{n} \left(y^{(i)} - \theta \right) \stackrel{!}{=} 0$$

$$\sum_{i=1}^{n} y^{(i)} - n\theta = 0$$

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} y^{(i)} =: \bar{y}.$$

