Introduction to Machine Learning

] Advanced Risk-Minimization
] L1 Risk Minimizer (Deep-Dive)

° Learning goals
@ Derive the risk minimizer of the
& L1-loss

@ Derive the optimal constant model for
== ‘ the L1-loss



m L1-LOSS: RISK MINIMIZER /2

* Note that since we are computing the derivative w.r.t. the integration boundaries, we
need to use Leibniz integration rule

We get
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m L1-LOSS: OPTIMAL CONSTANT MODEL /2

W.L.o.g. assume now that all (/) are sorted in increasing order.
Let us define imax = n/2 for n even and imax = (n— 1)/2 for n odd
and consider the intervals

Zi = [y, y ™ 1=0] i e {1, .., imax}-

By constructionZ;, ; € Z;for j & {1,. —1}andZ,  C 7.
With this, Remp can be expressed as
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L1-LOSS: OPTIMAL CONSTANT MODEL /3

From this follows that

o for “nis even™ 6 € T, = [y\"/?), y("/2+)] minimizes S, for
allie {1,... inax} = it minimizes Rypmp.

o for “nis odd™ 6 = y(™1)/2 ¢ 7,  minimizes S, for all
ie{1,..., imax } and it's minimal for [y{("+1)/2) _ g

= it minimizes Remp-

Since the median fulfills these conditions, we can conclude that it
minimizes the L1 loss.
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