Introduction to Machine Learning

Advanced Risk Minimization
Advanced Regression Losses

Learning goals

Know the Huberloss
Know the log-coshloss
Know the Cadchy loss
Know thelog-barrier loss
Know the e-insensitive loss
Know the quantile loss



ADVANCED LOSS FUNCTIONS

Special loss functions can be used to estimate non-standard posterior
components, to measure errors customarily orwhichiaredesignéedto
have special properties like robustness.

Examples:

@ Quantile loss: Overestimating a clinical parameter might not be as
bad as underestimating it.

® Log-barrier loss: Extremely under- or overestimating demand in
production would put company profit at risk.

@ c-insensitive loss: A certain amount of deviation in production does
no harm, larger deviations do.
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HUBER LOSS
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@ Piece-wise combination of L1/L2 to have robustness/smoothness
@ Analytic properties: convex, differentiable (once)
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@ Risk minimizer and optimal constant do not have a closed-form
solution. To fit a model numerical optimization is necessary.

@ Solution behaves like trimmed mean: a (conditional) mean of two
(conditional) quantiles.
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LOG-COSH LOSS

L(y. 1) = log (cbdh(1y = 1)) (“aéré codhlr) := £

» hyperbolic co sidual
o?anthm of the hyRerbollc cosme of the resWual

o Approxnmately eqqa] 10.0. 5(1 ik )2 for ﬁmall re§ldM'é-ls andto,

jy‘ lpgz forJarge residuals, meaning it works a smoothed

oyt L1H|qss u§1ngL2 arounq tpe qngnn nd is. moreover twice
® Has all the advantages of Huber loss and is, moreover, twice
differentiable everywhere.
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LOG-COSH LLOSS /2
What is the idea behind the Iog -cosh loss?
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obtain smoothed L1 loss 05 ‘
log(cosh(y — f)) =
log(cosh(|y — ll)) =
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The log-cosh approach to obtain a differentiable approxumanon of the
L1 loss can also be extended to differentiable quantile/pinball losses.
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LOG-COSHIEOSS) @S EmrIremiyr™) 3

The cosh(d, o) distribution: O 0O X
The (normahzed) reduprocal cosh(x) defines a pdf by its positivity on &

and since [~ Il dx = 1. if |y — 1 x O
We candefine a location-scale family.of distributions (using # and o)

resembling Gaussians with heavier tails, X X
Itis easy 10 cﬂéck that éﬁM USIng the iog cbéh Ioss is equnvalent to

MLE of the doé.h(!? 1}di§mbuhdn” imization problem has a solution

@ Plot shows log-barrier loss for ¢ 2:

p(X|H(7): mgj 04

] EX-»p[Xlz 7 o

g“ = Cosh(0,1)
o Val’x.\,p[X] = %(71’2(72) Sr // N(D.1)
6"E — arg max, []] | T = . S
a n 00 " ——
# = arg ming 5 log(cosh(x; — #)) 6 3 0
11 X

rerod ucton %o-Machine Learming -~ 5/ 11



CAUCHYLOSS! 055
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] TELEPHONE DATAS

We now illustrate the effeot of using robust loss functions. The telephone data O o X
set contains the' nimber, of calls (in 10m|o’unns) made in Belgium between
1950 and 1973 (n = 24). Outlsers are dueto a change in measurement x O

I wnho?t recallbratlon for 6 years
° 1rication ol

L errors below ¢ accepted without penalty :’< :’<

1950 1955 1960 1965 1970
Year
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| LOG:BARRIERLOSS/EALL LOSS
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Plot shows fcag barrier loss for € — 2:
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