Introduction to Machine Learning

Advanced Risk Minimization
Maximum Likelihood Estimation vs.
Empirical Risk Minimization

Distribution of Reskduals

Learning goals

o Correspondence between Laplace
errors and-L1 loss

@ Correspondence between Bernoulli
targets and the Bernoulli / log loss
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The likelihood is then
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The negative log-likelihood is
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MLE for Laplacian errors = ERM with L1-loss.

@ Some losses correspond to more complex or less known error
densities, like the Huber loss

@ Huber density is (unsurprisingly) a hybrid of Gaussian and Laplace
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@ We simulate data y | x ~ Laplacian (f,,.(x). 1) with £, = 0.2 - x.

@ We can plot the empirical error distribution, i.e. the distribution of the residuals
after fitting a regression model w.r.t. L1-loss.

@ With the help of a Q-Q-plot we can compare the empirical residuals vs. the
theoretical quantiles of a Laplacian distribution.

Diswibution of Residuals

Residuals vs. Quantles of Error Distribution
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This gives rise to the following loss function

L(y, m(x)) = —ylog(m(x)) — (1 — y)log(1 — 7 (x)), ye {0,1}

which we introduced as Bernoulli loss.

o nvoducton o Machine Leaming -~ 5/6



