m MAXIMUM LIKELIHOOD /2

From a statistics / maximum-likelihood perspective, we assume (or we O
pretend) we know the underlying distribution p(y | x, 8).
7 ® Then,giveniiddata D = ((x(", y") .. (x() y(")) from P,, X @)
the maximum-likelihood principle is to maximize the likelihood
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or equivalently to minimize the negative log-likelihood
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MAXIMUM LIKELIHOOD /3

From an ML perspective we assume our hypothesis space corresponds
to the space of the (parameterized) fie.

@ Simply define neg. log-likelihood as loss function

L(y.f(x|0)):= —logp(y|x.0)

@ Then, maximum-likelihood = ERM
n
Remp(6) = Z L (y(i)_ f (x(i) | 9))
i=1

@ NB: When we are only interested in the minimizer, we can ignore
multiplicative or additive constants.

@ We use x as “proportional up to multiplicative and additive
constants”
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GAUSSIAN ERRORS - L2-LOSS /2

Easy to see: minimizing neg. log-likelihood with Gaussian errors is the O 0 X
same as ERM with [2-loss:
X LO
—40) = —log(L(0))
- L0 _r(x6)) XX
x —log Eexp 257 (y - f(x |0))

n
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i=1
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GAUSSIAN ERRORS - L2-LOSS /3

® We simulate data y | x ~ A (fue(x). 1) with £ = 0.2 X O 0O X
@ Let's plot empirical errors as histogram, after fitting our model with [2-loss
® Q-Q-plot compares empirical residuals vs. theoretical quantiles of Gaussian x O

Digdbuion of Residusls Resduak vs. Quanties of Eror Dis¥ibution

reddiak x
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DISTRIBUTIONS AND LOSSES

e For every error distribution I, we can derive an equivalent loss
function, which leads to the same point estimator for the parameter
vector 8 as maximume-likelihood. Formally,

0 e arg maxg L(0) = #e ang ming — log( L(@))

@ But: The other way around does not always work: We cannot
derive a corresponding pdf or error distribution for every loss
function - the Hinge loss is one prominent example, for which
some probabilistic interpretation is still possible however, see

» Sallich 1999 J

Invoduction o Machine Leaming ~ 7 /8

O
X



m DISTRIBUTIONS AND LOSSES /2

When does the reverse direction hold?

@ If we can write the loss as L(y, f(x)) = L(y — f(x)) = L(r) for
r € I, then minimizing L(y — f(x)) is equivalent to maximizing a
conditional log-likelihood log(p(y — f(x|8)) if
o log(p(r)) is affine trafo of L (undoing the x):

log(p(r)) = a—bL(r), ac B,b>0

e pis a pdf (non-negative and integrates to one)

Thus, a loss L corresponds to MLE under some distribution if there
exist a € [£, b > 0 such that

/ exp(a— bL(r))dr = 1
R
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