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SOME BASIC TERMINOLOGY

Classification losses are usually expressed in terms of the margin:
v =y - f(x).

— Exponential Squared (scores)
> Hinge 0-1
t#18quared hinge
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NUMERICAL PROPERTIES: SMOOTHNESS

@ Smoothness of a function is a property measured by the number of
continuous derivatives.

@ Derivative-based optimization requires smoothness of the risk Remp(8)
@ If loss is unsmooth, we might have to use derivative-free
optimization (or worse, in case of 0-1)
o Smoothness of Remg( @) not only depends on L, but also requires
smoothness of f(x)!

Uy )

Squared loss, exponential loss and squared
hinge loss are continuously differentiable.
Hinge loss is continuous but not differentiable.

“1
X 0-1 loss is not even continuous.

o Intoducion to Machine Leaming ~ 5/9



NUMERICAL PROPERTIES: CONVEXITY

@ Afunction Rgy,(0) is convex if
Ramp (-0 +(1-1) -6) <t Remp () + (1~ ) - Ramp (6)

vite (1)l e ©
(strictly convex if the above holds with strict inequality).

@ In optimization, convex problems have a number of convenient
properties. E.g., all local minima are global.
— strictly convex function has at most one global min
(unigueness).

® For Remp € C2, Remp is convex iff Hessian V2R amp(8) is psd.
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NUMERICAL PROPERTIES: CONVERGENCE

In case of complete separation, optimization might even fail entirely, e.g.:

Margin-based loss that is strietly menatenicly
decreasing iny - f, e.g., Bernoulli loss:

Ly, 1(x)) = log (1 + exp(~yf(x)))

f linear in @, e.g., logistic regression with f(x | 8) = 8 x

Data perfectly separable by our learner, so we can find 8:
yOf (xw | 9) = y"0"x" = 0 wx"

Can now a construct a strictly better 8

Remp(2 0) = Z": L (2y"’87x"’) < Rar(0)

I |
As ||@|| increases, sum strictly decreases, as argument of L is strictly larger

We can iterate that, so there is no local (or global) optimum, and no numerical
procedure can converge
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NUMERICAL PROPERTIES: CONVERGENCE /2

@ Geometrically, this translates to an ever steeper slope of the
logistic/softmax function, i.e.. increasingly sharp discrimination:

@ In practice, data are seldomly linearly separable and misclassified
examples act as counterweights to increasing parameter values.

@ Besides, we can use regularization to encourage convergence to robust
solutions.
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