Introduction to Machine Learning

Advanced RisksMinimization ses

Advanced Classification Losses

Learning goals

- Know the (squared) hinge loss
- Know the L2 loss defined on

Learning goals

- Know the exponential loss Know the (squared) hinge loss
- Know the L2 loss defined on scores
- Know the exponential loss
- Know the AUC loss.

HINGE LOSS

- The intuitive appeal of the 0-1-loss is set off by its analytical properties ill-suited to direct optimization.
- The hinge loss is a continuous relaxation that acts as a convex upper bound on the 0-1-loss (for y ∈ {-1, +1}):

$$L(\mathbf{y},(\mathbf{y},\mathbf{y})) = \max\{0,1-yf\}\mathbf{x})\}.$$

- Note that the hinge loss only equals zero for a margin ≥ 1, encouraging confident (correct) predictions.
- It resembles a door hinge, hence the name:

SQUARED HINGE LOSS

• We can also specify a squared version for the hinge loss:

$$L(J_{(yx)}) = \max\{0, (1 - yf)\}^{2}\}$$

- The L2 form punishes margins yf (€)(0, 1) less severely but puts a high penalty on an ore confidently wrong predictions.
- Therefore, it is smoother yet more outlier-sensitive than the non-squared hinge loss.

SQUARED LOSS ON SCORES

 Analogous to the Brier score defined on probabilities we can specify a squared loss on classification scores (again, y ∈ {-1, +1}, using that y² ≡ 1):

$$L(y, f(x)(y+f) \Leftrightarrow -(y(x))f)^{2} = yy^{2} - 22yfx + f^{2}(x))^{2} =$$

$$= -12yf2yf + (yf)x^{2}) + (1yf)^{2}yf(x)^{2}$$

 This loss behaves just like the squared hinge loss for yf (x) 1, but is zerosonly for yf ← 1 and actually linereases agains for larger for margins (which (is line general not idesirable!) rable!)

CLASSIFICATION LOSSES: EXPONENTIAL LOSS

Another smooth approximation to the 0-1-loss is the exponential loss:

approx(p/af) = lexb(e-yf), lose of in AdaBoost Intial loss:

- Convex, differentiable (thus easier to optimize than 0-1-loss).
- Loss increases exponentially for wrong predictions with high
- Confidence; if-prediction is correct but with low-donfidence only, the loss its still positive rediction is right with a small confidence only,
- No closed-form analytic solution to (empirical) risk minimization.
- No closed-form analytic solution to (empirical) risk minimization.

CLASSIFICATION LOSSES: AUC-LOSS

- Often AUC is used as an evaluation criterion for binary classifiers.
- Let $y \in \{-1, +1\}$ with n_- negative and n_+ positive samples.
- The AUC can then be defined as

$$AUC = \frac{1}{n_{+}} \frac{1}{n_{-}} \sum_{i:y^{(i)}=1} \sum_{j:y^{(i)}=-1} [f^{(i)} > f^{(j)}]$$

- This is not differentiable w.r.t f due to indicator [f(i) > f(i)].
- The indicator function ican be approximated by the idistribution function of the triangular distribution on [-1, 1] with mean 0.
- However, direct optimization of the AUC is numerically difficult and might not work as well as using a common doss and tuning for AUC impracticeAUC in practice.

