Introduction to Machine Learning

Advanced Risk Minimization
Bernoulli Loss

Learning goals

@ Know the Bernoulli loss and related
v losses (log-loss, logistic loss,
1 Binomial loss)
@ Derive the risk minimizer
@ -Derive the optimal constant model



BERNOULLI LOSS

I

Lify ., f) log(1 eexp(+yH{f))) fonyc{+1]+1}
Lify)f) —= s+ yH{ f-logll H-exp(f)) x for yie {0;1}

@ Two equivalent formulations for different label encodings

Negative log-likelihood of Bernoulli model, e.g., logistic regression
Convex, differentiable

Ly Ty =Inlf +exp{~y1)
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BERNOULLI LOSS ON PROBABILITIES

If scores are transformed into probabilities by the logistic function O

7 (%) (1 Hexpleef)) Tix(on equivatently-ifef 4 log (,f) aré the

log-ndds ofsr)) we.arrive-atranother equivalent fermulation of:the loss, X O
where ¥ dis-againencoded as-{0.1 )

L(y) )=+ plog () + (1 + yMog (1 + )
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BERNOULLI LOSS: RISK MINIMIZER
The risk minimizer for the Bernoulli loss defined for probabilistic
classifiers 7(x) andon y € {0,1} is
7" (x) = (x) = P(y = 1] x = x).
Proof: We can write the risk for binary y as follows:

R() = E.[L(1.x(0)-n(x)+ LO.x(x))- (1 - n(x))].

l  with 5(x) = P(y = 1| x) (see section an the 0-1-loss for more details).
For afixed x we compute the point-wise optimal value c by setting the derivative to 0:

0

55 (~log ¢ 1(x) ~Iog(1 ~2) (1 = 1(x))
o) 1en

—n(x) + n(x)c + ¢ — n(x)c

c(1—-rc) 0

[

n(x).
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BERNOULLI LOSS: RISK MINIMIZER /2

The risk minimizer for the Bernoulli loss definedony € {—1,1} and
scores f(x) is the point-wise log-odds. i.e. the logit function (inverse of
logistic function) of p(x) = P(y | x = x):

F(x) = log(5%5) ‘

The function is undefined when P(y | x =x) =1orP(y | x =x) =0,
but predicts a smooth curve which grows when P(y | x = Xx) increases
and equals O when P(y | x ="x) = 0.5.
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BERNOULLI LOSS: RISK MINIMIZER /3

Proofi:As beferewe minithizeoint-wise optimal vall by setting t!
IV

= Ey[L(1.£(x)) -n(x) + L(~1,7(x)) - (1 — n(x))]
= Ey [log(1 + exp(—f(x)))n(x) + log(1 + exp(f(x)))(1 — 7(x))]

For afixed x we.compute the point:wise optimal value ¢ by setting the
derivative to 0: " "

R(})

5e 1oB(1 + exp(~))(x) + log(1 + exp(e))(1 7(x) = 0
1 ?x::p(c)c) n(x) + 5 fx:)(qi()c)h :;(x3) = 0
exp(—cn(x) —1+nx) _
1 +exp(—c) B
1
n(x) + 1 +exp(—c) -0

|

o = ()
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BERNOULLI: OPTIMAL CONSTANT MODEL

The: optinal constant, probability| modet s x ). £ ¥ w.rit. thet Bernaulli loss|for
labels fram M4t bis: [0 1) is

. Lo
- . — 4N
‘ 0 1Eli‘ggmll'l Rem(?) mg }’ (

Again, this is the fraction of class-1 observations in the observed data. We can
simply. prove this again by setting the derivative ob the riskito 0and solving'for
VT he optimal constant score model fEx) i @ wa.td the Bevnoulli lessi labels)
from 34wt ory = {0, 1} is:

A

) n. n./n
! = arg min Remp( @) = log P log —
g -

n_/n

where n_ and n.. are the numbers of negative and positive observations,
respectively.

This again shows a tight (and unsurprising) connection of this loss to log-odds.
Proving this is also a (quite simple) exercise.

]
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BERNOULLI-LOSS:YNAMING-CONVENTICN -

We: have sgenthree loss functions that are closely relatedolin/the: s
literaturey there are differentnames for thedosses:

L(y.f) log{ exe(¥) - fory e {=th+1}
L(y.f) = —y-F+log(1+exp(f)) forye {01}
iy em)  =0d sy log (hv) (1[~ry)tog(1‘ svm ndargeievgo, 1}
Ty = Y g () -
This again shows a tight (and unsurprising) connection of this loss to

log-odds Lo . _—
are equally referred to as Bernoulli, Binomial, logistic, log loss, or

c;{osa-enﬁrgpx (spow,ing‘gquiv‘gl?pce is a §limple exercise).

1l

Iog(1 —m) fory e {—1,+1}

i
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BERNOULLI-LOSS: NAMING CONVENTION

We have seen three loss functions that are closely related. In the
literature, there are different names for the losses:

L(y,f(x)) = log(1+ exp(—yf(x))) fory e {—1,+1}
L(y.f(x)) = —y-f(x)+log(1+ exp(f(x))) forye {0,1}

are referred to as Bernoulli, Binomial or logistic loss.

Ly, m(x)) = —ylog(m(x)) — (1 — y)log (1 — x(x)) foryec {0,1}

is referred to as cross-entropy or log-loss.

We usually refer to all of them as Bernoulli loss, and rather make clear
whether they are defined on labels y € {0,1}ory € {—1,+1}andon
scores f(x) or probabilities m(x).
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BERNOULLI LOSS MIN = ENTROPY SPLITTING

When fitting a tree we minimize the risk within each node " by risk
minimization and predict the optimal constant. Another approach that is
common in literature is to minimize the average node impurity Imp(\").

_ - N (N s (V)
Claim: Entropy splitting Imp(\) = — "7 _, 7" " log 7}

to minimize risk measured by the Bernoulli loss.
Note that =\ ' := - 3 [y =k].

(x.y)EN

is equivalent

Proof: To prove this we show that the risk related to a subset of
observations N C D fulfills

R(N) = nyImp(N),

where R(\) is calculated w.r.t. the (multiclass) Bernoulli loss

)
Ly, m(x)) = — Y [y = k]log (mk(x)).
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