Introduction to Machine Learning

Advanced Risk Minimization Bernoulli Loss

Learning goals

 Know the Bernoulli loss and related losses (log-loss, logistic loss, Binomial loss)

Learning goals

- - Derive the risk minimizer Know the Bernoulli loss and related losses (log-loss, logistic loss, Binomial loss)
 - Derive the risk minimizer
 - Derive the optimal constant model

BERNOULLI LOSS

$$\begin{split} &L(y,L(y),f) == \log((1+\exp(p(y)f(f)))) \text{ for } y) \in \{\{-1,1+1\}\} \\ &L(y,L(y),f) == -y \cdot y \cdot f(f) + \log((1+\exp(f))(x) \text{ for } y \in \{0,1\}0,1\} \end{split}$$

× 0 0 × × ×

- Two equivalent formulations for different label encodings
- Negative log-likelihood of Bernoulli model, e.g., logistic regression
- Convex, differentiable

BERNOULLI LOSS ON PROBABILITIES

If scores are transformed into probabilities by the logistic function $\pi(\texttt{x}) \left(\texttt{1} + \texttt{lexp}(\texttt{xpf})\right) 7 \times (\texttt{or}) = \texttt{quivalently} \times \texttt{log} \left(\texttt{x} + \texttt{m} \times \texttt{pf}\right) = \texttt{quivalently} \times \texttt{log} \times \texttt{pf} \times \texttt$

$$L(y, \pm(y, \pi) = -y \log(\pi)) + (1 - y) \log(1 + \pi) (x)$$
.

BERNOULLI LOSS: RISK MINIMIZER

The risk minimizer for the Bernoulli loss defined for probabilistic classifiers $\pi(\mathbf{x})$ and on $y \in \{0, 1\}$ is

$$\pi^*(\mathbf{x}) = \eta(\mathbf{x}) = \mathbb{P}(y = 1 \mid \mathbf{x} = \mathbf{x}).$$

Proof: We can write the risk for binary y as follows:

$$\mathcal{R}(t) = \mathbb{E}_x \left[L(1, \pi(\mathbf{x})) \cdot \eta(\mathbf{x}) + L(0, \pi(\mathbf{x})) \cdot (1 - \eta(\mathbf{x})) \right],$$

with $\eta(\mathbf{x}) = \mathbb{P}(y = 1 \mid \mathbf{x})$ (see section on the 0-1-loss for more details). For a fixed \mathbf{x} we compute the point-wise optimal value c by setting the derivative to 0:

$$\frac{\partial}{\partial c} \left(-\log c \cdot \eta(\mathbf{x}) - \log(1-c) \cdot (1-\eta(\mathbf{x})) \right) = 0$$

$$-\frac{\eta(\mathbf{x})}{c} + \frac{1-\eta(\mathbf{x})}{1-c} = 0$$

$$\frac{-\eta(\mathbf{x}) + \eta(\mathbf{x})c + c - \eta(\mathbf{x})c}{c(1-c)} = 0$$

$$c = \eta(\mathbf{x}).$$

BERNOULLI LOSS: RISK MINIMIZER / 2

The risk minimizer for the Bernoulli loss defined on $y \in \{-1, 1\}$ and scores $f(\mathbf{x})$ is the point-wise log-odds; i.e. the logit function (inverse of logistic function) of $p(\mathbf{x}) = \mathbb{P}(y \mid \mathbf{x} = \mathbf{x})$:

The function is $\rho(\mathbf{x})$ defined when $P(y \mid \mathbf{x} = \mathbf{x}) = 1$ or $P(y \mid \mathbf{x} = \mathbf{x}) = 0$, but predicts a state the curve which grows when $P(y \mid \mathbf{x} = \mathbf{x})$ increases and equals 0 when $P(y \mid \mathbf{x} = \mathbf{x}) = 0.5$.

Proof: As before we minimize ...

The function is undefined when $P(y \mid \mathbf{x} = \mathbf{x}) = 1$ or $P(y \mid \mathbf{x} = \mathbf{x}) = 0$, but predicts a smooth curve which grows when $P(y \mid \mathbf{x} = \mathbf{x})$ increases and equals 0 when $P(y \mid \mathbf{x} = \mathbf{x}) = 0.5$. $f(\mathbf{x}) \cdot (1 - \eta(\mathbf{x}))$ $= \mathbb{E}_{\mathbf{x}} [\log(1 + \exp(-f(\mathbf{x})))\eta(\mathbf{x}) + \log(1 + \exp(f(\mathbf{x})))(1 - \eta(\mathbf{x}))]$

BERNOULLI LOSS: RISK MINIMIZER / 3

Proof i As before we minimize oint-wise optimal value *c* by setting the

For a fixed $\underline{\mathbf{x}}$ we compute the point, wise optimal value \underline{c} by setting the derivative to $0:+\exp(-c)^{\eta(\mathbf{x})}$ $+\exp(-c)^{\eta(\mathbf{x})}$ $+\exp(-c)^{\eta(\mathbf{x})}$

$$\frac{\partial}{\partial c} \log(1 + \exp(-c)) \eta(\mathbf{x}) + \frac{1}{1 + \exp(-c)} S(1 - \eta(\mathbf{x})) = 0$$

$$\frac{\partial}{\partial c} \log(1 + \exp(-c)) \eta(\mathbf{x}) + \log(1 + \exp(c)) (1 - \eta(\mathbf{x})) = 0$$

$$-\frac{\exp(-c)}{1 + \exp(-c)} \eta(\mathbf{x}) + \frac{-\eta(\mathbf{x})}{1 + \exp(-c)} (1 - \eta(\mathbf{x})) = 0$$

$$-\frac{\exp(-c)}{1 + \exp(-c)} \eta(\mathbf{x}) + \frac{\eta(\mathbf{x})}{1 + \exp(-c)} = 0$$

$$-\frac{\exp(-c) \eta(\mathbf{x}) - 1 + \eta(\mathbf{x})}{1 + \exp(-c)} = 0$$

$$-\eta(\mathbf{x}) + \frac{1}{1 + \exp(-c)} = 0$$

$$c = \log\left(\frac{\eta(\mathbf{x})}{1 - \eta(\mathbf{x})}\right)$$

$$c = \log\left(\frac{\eta(\mathbf{x})}{1 - \eta(\mathbf{x})}\right)$$

BERNOULLI: OPTIMAL CONSTANT MODEL

The optimal constant probability model of $(\mathbf{x}) \leftarrow \theta$ w.r.t. the Bernoulli loss for labels from $\mathcal{Y} = \{0,1\}$ is:

$$\hat{\theta} = \underset{\theta}{\operatorname{arg \, min}} \mathcal{R}_{\operatorname{emp}}(\theta) = \frac{1}{n} \sum_{\substack{i=1 \ i=1}}^{n} y_{i}^{(i)}$$

Again, this is the fraction of class-1 observations in the observed data. We can simply prove this again by setting the derivative of the risk to 0 and solving for θ . The optimal constant score model $f(\mathbf{x}) \in \theta$ w.r.t. the Bernoulli loss labels from $\mathcal{Y} = \{0,1\}$ is:

$$\hat{\theta} = rg \min_{\theta} \mathcal{R}_{\mathsf{emp}}(\theta) = \log \frac{n_{+}}{n_{-}} = \log \frac{n_{+}/n}{n_{-}/n}$$

where n_- and n_+ are the numbers of negative and positive observations, respectively.

This again shows a tight (and unsurprising) connection of this loss to log-odds. Proving this is also a (quite simple) exercise.

BERNOULLI-LOSS: NAMING CONVENTION /2

We have seen three loss functions that are closely related in the s literature, there are different names for the losses:

$$\begin{array}{ll} L\left(y,f\right) & = & \log\left(1 \min \exp\left(-yf\right)\right) = \log y^n \in \left\{-\log^{\frac{n}{1-1}}\right\}^{\frac{n}{n}} \\ L\left(y,f\right) & = & -y \cdot {}^{\frac{n}{2}}f + \log\left(1 + \exp(f)\right)^{\frac{n}{n}} \text{ for } y \in \left\{0,1\right\}^{\frac{n}{2}} \\ \text{vL'}\left(y \neq \pi\right) & = & \operatorname{and} \left(-y \log\left(1 + \exp(f)\right) \cdot \log\left(1 + \exp(f)\right)^{\frac{n}{n}} \right) \\ \text{observations, respectively.} \\ L\left(y,\pi\right) & = & -\frac{1-y}{2}\log\left(\pi\right) - \frac{1-y}{2}\log\left(1-\pi\right) \quad \text{for } y \in \left\{-1,+1\right\} \end{array}$$

This again shows a tight (and unsurprising) connection of this loss to log-odds, are equally referred to as Bernoulli, Binomial, logistic, log loss, or cross-entropy (showing equivalence is a simple exercise). Proving this is also a (quite simple) exercise.

BERNOULLI-LOSS: NAMING CONVENTION

We have seen three loss functions that are closely related. In the literature, there are different names for the losses:

$$L(y, f(\mathbf{x})) = \log(1 + \exp(-yf(\mathbf{x}))) \text{ for } y \in \{-1, +1\}$$

$$L(y, f(\mathbf{x})) = -y \cdot f(\mathbf{x}) + \log(1 + \exp(f(\mathbf{x}))) \text{ for } y \in \{0, 1\}$$

are referred to as Bernoulli, Binomial or logistic loss.

$$L(y, \pi(\mathbf{x})) = -y \log(\pi(\mathbf{x})) - (1 - y) \log(1 - \pi(\mathbf{x})) \quad \text{for } y \in \{0, 1\}$$

is referred to as cross-entropy or log-loss.

We usually refer to all of them as **Bernoulli loss**, and rather make clear whether they are defined on labels $y \in \{0, 1\}$ or $y \in \{-1, +1\}$ and on scores $f(\mathbf{x})$ or probabilities $\pi(\mathbf{x})$.

BERNOULLI LOSS MIN = ENTROPY SPLITTING

When fitting a tree we minimize the risk within each node $\mathcal N$ by risk minimization and predict the optimal constant. Another approach that is common in literature is to minimize the average node impurity $Imp(\mathcal N)$.

Claim: Entropy splitting $\mathrm{Imp}(\mathcal{N}) = -\sum_{k=1}^g \pi_k^{(\mathcal{N})} \log \pi_k^{(\mathcal{N})}$ is equivalent to minimize risk measured by the Bernoulli loss.

Note that
$$\pi_k^{(\mathcal{N})} := \frac{1}{n_{\mathcal{N}}} \sum_{(\mathbf{x}, y) \in \mathcal{N}} [y = k].$$

Proof: To prove this we show that the risk related to a subset of observations $\mathcal{N} \subseteq \mathcal{D}$ fulfills

$$\mathcal{R}(\mathcal{N}) = n_{\mathcal{N}} \operatorname{Imp}(\mathcal{N}),$$

where $\mathcal{R}(\mathcal{N})$ is calculated w.r.t. the (multiclass) Bernoulli loss

$$L(y, \pi(\mathbf{x})) = -\sum_{k=1}^{g} [y = k] \log (\pi_k(\mathbf{x})).$$

BERNOULLI LOSS MIN = ENTROPY SPLITTING / 2

$$\begin{split} \mathcal{R}(\mathcal{N}) &= \sum_{(\mathbf{x}, y) \in \mathcal{N}} \left(-\sum_{k=1}^g [y=k] \log \pi_k(\mathbf{x}) \right) \\ &\stackrel{(*)}{=} -\sum_{k=1}^g \sum_{(\mathbf{x}, y) \in \mathcal{N}} [y=k] \log \pi_k^{(\mathcal{N})} \\ &= -\sum_{k=1}^g \log \pi_k^{(\mathcal{N})} \underbrace{\sum_{(\mathbf{x}, y) \in \mathcal{N}} [y=k]}_{\eta_{\mathcal{N}} \cdot \pi_k^{(\mathcal{N})}} \\ &= -n_{\mathcal{N}} \sum_{k=1}^g \pi_k^{(\mathcal{N})} \log \pi_k^{(\mathcal{N})} = n_{\mathcal{N}} \operatorname{Imp}(\mathcal{N}), \end{split}$$

where in $^{(*)}$ the optimal constant per node $\pi_k^{(\mathcal{N})}=\frac{1}{n_{\mathcal{N}}}\sum_{(\mathbf{x},\mathbf{v})\in\mathcal{N}}[y=k]$ was plugged in.

