Introduction to Machine Learning

= Advanced Risk Minimization
Bias-Variance Decomposition

Bias:©1.628

Léarning-goals

@ ‘Understand how to decompose the
generalization error of a learner into

9 Dbias of the learner
@ varianceofthe learner
o inherent noise inthedata




BIAS-VARIANCE DECOMPOSITION

Let us take a closer look at the generalization error of a learning O 0O X
algorithm Z, . This is the expected error of an induced model fp_, on

training sets of size n, when applied to a fresh, random test observation. x O
GEn (1) = Ep,ry, txy)~ry (L (% 70,(%)) ) = Ep,y (L (v 75,(0))) X X

We:therefare need 'totake the expectatiomaver all training sets of 'size
n, as well as the independent test observation.

For the squared loss, there is a nice additive decomposition of GE,, (Z, )
into threecompornents.™ | net :

Hence we assume that the data is generated by

y = fbue(x) T+ €,

with zero-I n homo ic error independer X
with zero-mean homoskedastic error € ~ (0, 02) independent of x.

= Similar decomps also exist for other losses expressible as Bregman divergences (e.9.

cross-entropy). One exception is the 0/1 loss (Brown and Ali 2024)

| |
o
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m BIAS-VARIANCE DECOMPOSITION /2
GE,(1,) = O 0O X
Ko m,,\[wm (fp,,(x) | x, y)l +E, [((gm(x) ~Ep, (?D,,(x)))2 | x, y)] % '®

Variance of the data

Variance of leamer at (x,y) S cdbxc?lrumra:[x.y)

© The first term expresses the variance of the data. This is pure
noise in the data. Also called Bayes, intrinsic or irreducible error.
No matter what we do, we will never get below this error.

© The second term expresses, on average, how much fp, (x)
fluctuates around test points if we vary the training data.
Expresses also the learner's tendency to learn random things
irrespective of the real signal (overfitting).

© The third term says how much we are "off" on average at test
locations (underfitting). Models with high capacity typically have
low bias and vice versa.
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Illustration: Let us consider the following example. We will generate a
dataset using the following model :

X2
y=x+ 5 +e, € ~ N(0,1)

The data is then split into a training set and a test set.
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To obtain estimates for the bias and variance, we will train several
models by sampling with replacement from the training data. This is
commonly known as bootstrapping.

First, we train several (low capacity) linear models (polynomial of
degree d = 1).
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By creating several models, we obtain the average model over different
samples of the training dataset.
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We can now estimate the (squared) bias, by computing the average
squared difference between the average model and the true model, at
the test point locations.

Bias: 1.628
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We compute the average variance of the predictions of the models we
trained at the test point locations.

Variance: 0.135

/

e 1

it

GEn(Z1) ~1+1.628 + 0.135 = 2.763

® The biggest component of the generalization error is the bias.

® Computing the MSE in the usual way for each model, via L2 loss,
and then averaging over models gives rise to nearly the same
value, as expected
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Variance: 0.135

IR
,' Irl___,

We can now check whether this alternative computation of the GE is correct
So, we simply compute the MSE in the standard fashion for each model

So for each model we compute the L2 loss at each data point, then average
Then we average these MSEs over all models

Result = 2.72, would be closer if we average over more models and test points
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We will repeat the same procedure, but use a high-degree polynomial
(d = 7) with more capacity.
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Bias: 0.139 . ’ Variance: 1.963

GEn (1) ~ 1+ 0.139 + 1.963 = 3.102

® The generalization error is higher than before
® Even though the bias is lower, the variance of the learner is higher.
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What happens if we use a model with the same complexity as the true
model (quadratic polynomial)?
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Bias: 0.008

Variance: 0.082

GE, (1) ~ 1+ 0.008 + 0.082 = 1.091

@ The generalization error is the lowest at this complexity.

@ The variance of the data acts as a lower bound.
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CAPACITY AND OVERFITTING

=+ Training error

—  Generalizathon ervor

Capacity

Credi: lan Goodiclow

® The performance of a learner depends on its ability to
@ fitthe training data well
© generalize to new data

@ Failure of the first point is called underfitting
@ Failure of the second item is called overfitting
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= + Training error

Undertitting 2ooe| Overfitthng 2000

= Generalization ervor

Credi: lan Goodiclow

@ The tendency of a model to underfit/overfit is a function of its
capacity, determined by the type of hypotheses it can learn.

@ Usually, low bias means high capacity, which in turn means a
higher chance of overfitting

@ Low-bias models usually have also higher variance
@ For such models, regularization (we discuss later) is essential

@ Even for correctly specified models, the generalization error is
lower-bounded by the irreducible noise o2
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