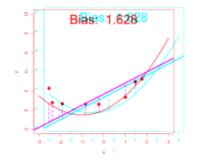
Introduction to Machine Learning

Advanced Risk Minimization: Bias-Variance Decomposition



Learning goals

- Understand how to decompose the generalization error of a learner into
 - learner of the learner
 - wariance of the learner
 - vinherent noise in the data
 - inherent noise in the data

Let us take a closer look at the generalization error of a learning algorithm \mathcal{I}_L . This is the expected error of an induced model $\hat{f}_{\mathcal{D}_n}$, on training sets of size n, when applied to a fresh, random test observation.

$$GE_{n}\left(\mathcal{I}_{L}\right) = \mathbb{E}_{\mathcal{D}_{n} \sim \mathbb{P}_{xy}^{n}, (\mathbf{x}, y) \sim \mathbb{P}_{xy}}\left(L\left(y, \hat{f}_{\mathcal{D}_{n}}(\mathbf{x})\right)\right) = \mathbb{E}_{\mathcal{D}_{n}, xy}\left(L\left(y, \hat{f}_{\mathcal{D}_{n}}(\mathbf{x})\right)\right)$$

We therefore need to take the expectation over all training sets of size n, as well as the independent test observation.

For the squared loss, there is a nice additive decomposition of $GE_n(\mathcal{I}_L)$ into three-components if a is generated by

Hence we assume that the data is generated by

$$y = f_{\text{true}}(\mathbf{x}) + \epsilon$$
,
 $y = f_{\text{true}}(\mathbf{x}) + \epsilon$,

with zero-mean homoskedastic error $\epsilon \sim (0, \sigma^2)$ independent of ${\bf x}$.

with zero-mean homoskedastic error $\epsilon \sim (0, \sigma^2)$ independent of \mathbf{x} .

* Similar decomps also exist for other losses expressible as Bregman divergences (e.g.

cross-entropy). One exception is the 0/1 loss (Brown and Ali 2024)

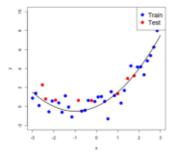
$$\begin{aligned} & \textit{GE}_n\left(\mathcal{I}_L\right) = \\ & \underbrace{\sigma^2}_{\text{Variance of the data}} + \mathbb{E}_{xy} \underbrace{\left[\text{Var}_{\mathcal{D}_n}\left(\hat{f}_{\mathcal{D}_n}(\mathbf{x}) \mid \mathbf{x}, y\right) \right]}_{\text{Variance of learner at } (\mathbf{x}, y)} + \mathbb{E}_{xy} \underbrace{\left[\left(\left(f_{\text{nue}}(\mathbf{x}) - \mathbb{E}_{\mathcal{D}_n}\left(\hat{f}_{\mathcal{D}_n}(\mathbf{x})\right)\right)^2 \mid \mathbf{x}, y\right) \right]}_{\text{Squared bias of learner at } (\mathbf{x}, y)} \end{aligned}$$

- The first term expresses the variance of the data. This is pure noise in the data. Also called Bayes, intrinsic or irreducible error. No matter what we do, we will never get below this error.
- The second term expresses, on average, how much f̂_{D_n}(x) fluctuates around test points if we vary the training data. Expresses also the learner's tendency to learn random things irrespective of the real signal (overfitting).
- The third term says how much we are "off" on average at test locations (underfitting). Models with high capacity typically have low bias and vice versa.

Illustration: Let us consider the following example. We will generate a dataset using the following model :

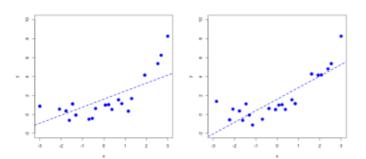
$$y = x + \frac{x^2}{2} + \epsilon$$
, $\epsilon \sim N(0, 1)$

The data is then split into a training set and a test set.

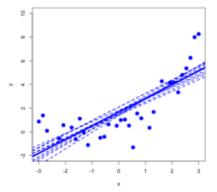


To obtain estimates for the bias and variance, we will train several models by sampling with replacement from the training data. This is commonly known as **bootstrapping**.

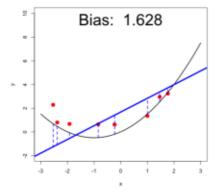
First, we train several (low capacity) linear models (polynomial of degree d=1).



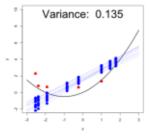
By creating several models, we obtain the average model over different samples of the training dataset.



We can now estimate the (squared) bias, by computing the average squared difference between the average model and the true model, at the test point locations.

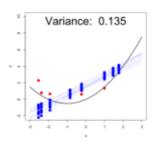


We compute the average variance of the predictions of the models we trained at the test point locations.



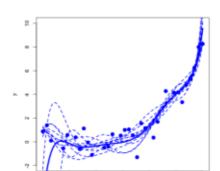
$$GE_n(I_L) \approx 1 + 1.628 + 0.135 = 2.763$$

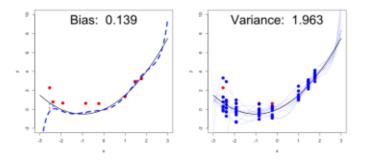
- The biggest component of the generalization error is the bias.
- Computing the MSE in the usual way for each model, via L2 loss, and then averaging over models gives rise to nearly the same value, as expected



- We can now check whether this alternative computation of the GE is correct
- . So, we simply compute the MSE in the standard fashion for each model
- So for each model we compute the L2 loss at each data point, then average
- Then we average these MSEs over all models
- Result = 2.72, would be closer if we average over more models and test points

We will repeat the same procedure, but use a high-degree polynomial (d=7) with more capacity.

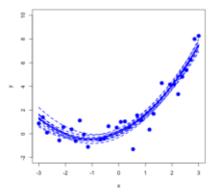


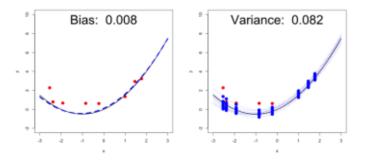


$$GE_n(\mathcal{I}_L) \approx 1 + 0.139 + 1.963 = 3.102$$

- The generalization error is higher than before
- Even though the bias is lower, the variance of the learner is higher.

What happens if we use a model with the same complexity as the true model (quadratic polynomial)?

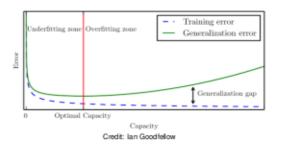




$$GE_n(\mathcal{I}_L) \approx 1 + 0.008 + 0.082 = 1.091$$

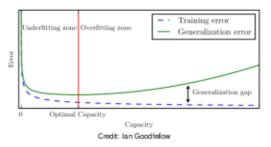
- The generalization error is the lowest at this complexity.
- The variance of the data acts as a lower bound.

CAPACITY AND OVERFITTING



- The performance of a learner depends on its ability to
 - fit the training data well
 - generalize to new data
- Failure of the first point is called underfitting
- · Failure of the second item is called overfitting

CAPACITY AND OVERFITTING /2



- The tendency of a model to underfit/overfit is a function of its capacity, determined by the type of hypotheses it can learn.
- Usually, low bias means high capacity, which in turn means a higher chance of overfitting
- · Low-bias models usually have also higher variance
- For such models, regularization (we discuss later) is essential
- \bullet Even for correctly specified models, the generalization error is lower-bounded by the irreducible noise σ^2