Optimization in Machine Learning

Evolutionary Algorithms ES / Numerical Encodings

X \times \times

Learning goals

- **•** Recombination
- Mutation
- A few simple examples

RECOMBINATION FOR NUMERIC

1

Options for recombination of two individuals $\mathbf{x}, \tilde{\mathbf{x}} \in \mathbb{R}^d$:

1

- **Uniform crossover**: Choose gene *j* of parent 1 with probability *p* and of parent 2 with probability $1 - p$
- **Intermediate recombination:** Offspring is created from mean of two parents: $\frac{1}{2}(\mathbf{x} + \tilde{\mathbf{x}})$
- **Simulated Binary Crossover (SBX)**: generate **two offspring**

$$
\bar{\mathbf{x}} \pm \frac{1}{2}\beta(\tilde{\mathbf{x}} - \mathbf{x}), \ \bar{\mathbf{x}} = \frac{1}{2}(\mathbf{x} + \tilde{\mathbf{x}}), \ \beta \in [0, 1] \text{ uniformly at random}
$$
\n
$$
\begin{array}{c|c|c|c|c|c|c} \hline \text{Gright} & \text{S\n
$$
\hline \text{S\n
$$
\text{S\n $$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$

 \overline{X}

MUTATION FOR NUMERIC

Mutation: Individuals get modified

Example for $\mathbf{x} \in \mathbb{R}^d$:

- **Uniform mutation:** Select random gene *x^j* and replace it by uniformly distributed value (within feasible range).
- **Gauss mutation:** $x \pm \mathcal{N}(0, \sigma\mathbf{I})$
- **Polynomial mutation:** Use a different distribution instead of normal distribution

Source: K. Deb, D. Deb. Analysing mutation schemes for real-parameter genetic algorithms, 2014

 \times \times

EXAMPLE OF AN EVOLUTIONARY ALGORITHM

(Simple) EA on 1-dim Ackley function on [−30, 30]. Usually, for optimizing a function $f:\mathbb{R}^d\to\mathbb{R}$, individuals are encoded as real vectors $\mathbf{x}\in\mathbb{R}^d.$

X \times \times

EXAMPLE OF AN EVOLUTIONARY ALGORITHM

Random initial population with size $\mu = 10$

 X $\times\overline{\times}$

We choose $\lambda = 5$ offsprings by neutral selection (red individuals).

Use Gaussian mutation with $\sigma = 2$, but without recombination.

Use $(\mu + \lambda)$ selection. Selected individuals are marked in green.

After 50 iterations:

EXAMPLE 2: GRID OF BALLS

Consider a grid in which *n* balls with random radius are placed.

Aim: Find the circle with the largest possible radius in the grid that does **not** intersect with the other existing circles.

- What is the fitness function?
- How is the population defined?

Implementation: <https://juliambr.shinyapps.io/balls/>

EXAMPLE 2: GRID OF BALLS

In our example, the chromosome of an individual is the center of a circle, so the chromosomes are encoded as 2-dimensional real vectors **x** = $(x_1, x_2) \in \mathbb{R}^2$.

The population $P \subset \mathbb{R}^2$ is given as a set of circle centers.

The fitness function evaluates an individual **x** ∈ *P* based on the distance to the nearest neighboring gray circle *k*.

$$
f(\mathbf{x}) = \min_{k \in \text{Grid}} \text{distance}(k, \mathbf{x}),
$$

where the distance is defined as 0 if a circle center is within the radius of a circle of the grid.

This function is to be maximized: we are looking for the largest circle that does not touch any of the gray circles.

 \times \times