Optimization in Machine Learning

Nelder-Mead method

Learning goals

- **•** General idea
- Reflection, expansion, contraction
- Advantages & disadvantages
- **•** Examples

- Derivative-free method ⇒ heuristic
- Generalization of bisection in *d*-dimensional space
- \bullet Based on *d*-simplex, defined by $d + 1$ points:
	- \bullet *d* = 1 interval
	- \bullet *d* = 2 triangle
	- \bullet *d* = 3 tetrahedron
	- $\bullet\ \cdots$

Х \times \times

A version of the **Nelder-Mead** method:

Initialization: Choose $d + 1$ random, affinely independent points \mathbf{v}_i (\mathbf{v}_i) are vertices: corner points of the simplex/polytope).

¹ Order: Order points according to ascending function values

 $f(\mathbf{v}_1) \leq f(\mathbf{v}_2) \leq \ldots \leq f(\mathbf{v}_d) \leq f(\mathbf{v}_{d+1}).$

with \mathbf{v}_1 best point, \mathbf{v}_{d+1} worst point.

 $\overline{\mathbf{X}}$

 $\frac{1}{v_3}$

 $\boldsymbol{\mathsf{X}}$ $\times\overline{\times}$

³ Reflection: Compute reflection point

$$
\mathbf{v}_r = \bar{\mathbf{v}} + \rho(\bar{\mathbf{v}} - \mathbf{v}_{d+1}),
$$

with $\rho > 0$. Compute $f(\mathbf{v}_r)$.

Note: Default value for reflection coefficient: $\rho = 1$

Distinguish three cases:

- Case 1: $f(\mathbf{v}_1) \leq f(\mathbf{v}_r) < f(\mathbf{v}_d)$
	- \Rightarrow Accept **v**_{*r*} and discard **v**_{*d*+1}
- Case 2: $f({\bf v}_r) < f({\bf v}_1)$
	- ⇒ **Expansion:**

$$
\bm{v}_e = \bar{\bm{v}} + \chi(\bm{v}_r - \bar{\bm{v}}), \quad \chi > 1.
$$

We discard \mathbf{v}_{d+1} and except the better of v_r and v_e .

Note: Default value for expansion coefficient: $\chi = 2$

X X X

 $QPT=(0,0)^T$

 \bullet Case 3: $f(\mathbf{v}_r) \geq f(\mathbf{v}_d)$

⇒ **Contraction:**

$$
\bm{v}_c = \bar{\bm{v}} + \gamma (\bm{v}_{d+1} - \bar{\bm{v}})
$$

with $0 < \gamma < 1/2$.

- If $f(\mathbf{v}_c) < f(\mathbf{v}_{d+1})$, accept \mathbf{v}_c .
- Otherwise, shrink **entire** simplex (**Shrinking**):

$$
\mathbf{v}_i = \mathbf{v}_1 + \sigma(\mathbf{v}_i - \mathbf{v}_1) \quad \forall i
$$

Note: Default values for contraction and shrinking coefficient: $\gamma = \sigma = 1/2$

⁴ Repeat all steps until stopping criterion met.

 \times \times

NELDER-MEAD

Advantages:

- No gradients needed
- Robust, often works well for non-differentiable functions.

Drawbacks:

- Relatively slow (not applicable in high dimensions)
- Not each step improves solution, only mean of corner values is reduced.
- No guarantee for convergence to local optimum / stationary point.

Visualization:

<http://www.benfrederickson.com/numerical-optimization/>

Note: Nelder-Mead is default method of R function optim(). If gradient is available and cheap, L-BFGS is preferred.

 \times \times

$$
\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_2
$$

XOX
XX
XX

$$
\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_2
$$

X O
X O
X X X

$$
\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_2
$$

 $X \cup X$

$$
\min_{\mathbf{x}} f(x_1, x_2) = x_1^2 + x_2^2 + x_1 \cdot \sin x_2 + x_2 \cdot \sin x_2
$$

XOX
XX
XX

NELDER-MEAD VS. GD

Nelder-Mead in multiple dimensions: Organize points (US cities) to keep predefined mutual distances. For 10 cities, gradient descent (top) converges well for a suitable learning rate. Nelder-Mead (bottom) fails to converge, even after many iterations.

NELDER-MEAD VS. GD / 2

Even for only 5 cities, Nelder-Mead (bottom) performs poorly. However, gradient descent (top) still works.