Optimization in Machine Learning

First order methods Weaknesses of GD – Curvature

X \times \times

Learning goals

- **•** Effects of curvature
- Step size effect in GD

REMINDER: LOCAL QUADRATIC GEOMETRY

Locally approximate smooth function by quadratic Taylor polynomial:

$$
f(\mathbf{x}) \approx f(\tilde{\mathbf{x}}) + \nabla f(\tilde{\mathbf{x}})^{\top}(\mathbf{x} - \tilde{\mathbf{x}}) + \frac{1}{2}(\mathbf{x} - \tilde{\mathbf{x}})^{\top} \nabla^2 f(\tilde{\mathbf{x}})(\mathbf{x} - \tilde{\mathbf{x}})
$$

X $\times\overline{\times}$

Source: <daniloroccatano.blog>.

REMINDER: LOCAL QUADRATIC GEOMETRY / 2

Study Hessian $\bm{\mathsf{H}} = \nabla^2 f(\bm{\mathsf{x}}^{[t]})$ in GD to discuss effect of curvature

Recall for quadratic forms:

- Eigenvector **v**max (**v**min) is direction of largest (smallest) curvature
- **H** called ill-conditioned if $\kappa(H) = |\lambda_{\text{max}}|/|\lambda_{\text{min}}|$ is large

EFFECTS OF CURVATURE

Intuitively, curvature determines reliability of a GD step

 \times \times

Quadratic objective *f* (blue) with gradient approximation (dashed green). **Left:** *f* decreases faster than ∇*f* predicts. **Center:** ∇*f* predicts decrease correctly. **Right:** *f* decreases more slowly than ∇*f* predicts. (Source: Goodfellow et al., 2016)

EFFECTS OF CURVATURE / 2

X **XX**

Worst case: H is ill-conditioned. What does this mean for GD?

• Quadratic Taylor polynomial of *f* around $\tilde{\mathbf{x}}$ (with gradient $\mathbf{g} = \nabla f$)

$$
f(\mathbf{x}) \approx f(\tilde{\mathbf{x}}) + (\mathbf{x} - \tilde{\mathbf{x}})^{\top} \mathbf{g} + \frac{1}{2} (\mathbf{x} - \tilde{\mathbf{x}})^{\top} \mathbf{H} (\mathbf{x} - \tilde{\mathbf{x}})
$$

• GD step with step size $\alpha > 0$ yields

$$
f(\tilde{\mathbf{x}} - \alpha \mathbf{g}) \approx f(\tilde{\mathbf{x}}) - \alpha \mathbf{g}^{\top} \mathbf{g} + \frac{1}{2} \alpha^2 \mathbf{g}^{\top} \mathbf{H} \mathbf{g}
$$

If $\boldsymbol{\mathsf{g}}^\top \boldsymbol{\mathsf{H}} \boldsymbol{\mathsf{g}}>0$, we can solve for optimal step size α^* :

$$
\alpha^* = \frac{\bm{g}^\top \bm{g}}{\bm{g}^\top \bm{H} \bm{g}}
$$

• If **g** points along **v**_{max} (largest curvature), optimal step size is

$$
\alpha^* = \frac{\mathbf{g}^\top \mathbf{g}}{\mathbf{g}^\top \mathbf{H} \mathbf{g}} = \frac{\mathbf{g}^\top \mathbf{g}}{\lambda_{\text{max}} \mathbf{g}^\top \mathbf{g}} = \frac{1}{\lambda_{\text{max}}}.
$$

⇒ *Large* step sizes can be problematic.

 \bullet If **g** points along \mathbf{v}_{min} (smallest curvature), then analogously

$$
\alpha^* = \frac{1}{\lambda_{\text{min}}}.
$$

- ⇒ *Small* step sizes can be problematic.
- **Ideally**: Perform large step along v_{min} but small step along v_{max} .

- What if **g** is not aligned with eigenvectors?
- **•** Consider 2D case: Decompose **g** (black) into **v**_{max} and **v**_{min}

 \times \times

- **•** Ideally, perform large step along v_{min} but small step along v_{max}
- However, gradient almost only points along v_{max}

- GD is not aware of curvatures and can only walk along **g**
- Large step sizes result in "zig-zag" behaviour.
- Small step sizes result in weak performance.

 \times \times

Poorly conditioned quadratic form. GD with large (red) and small (blue) step size. For both, convergence to optimum is slow.

Large step sizes for ill-conditioned Hessian can even increase

$$
f(\tilde{\mathbf{x}} - \alpha \mathbf{g}) \approx f(\tilde{\mathbf{x}}) - \alpha \mathbf{g}^{\top} \mathbf{g} + \frac{1}{2} \alpha^2 \mathbf{g}^{\top} \mathbf{H} \mathbf{g}
$$

if

$$
\frac{1}{2}\alpha^2\bm{g}^\top \bm{H}\bm{g} > \alpha \bm{g}^\top \bm{g} \quad \Leftrightarrow \quad \alpha > 2\frac{\bm{g}^\top \bm{g}}{\bm{g}^\top \bm{H}\bm{g}}.
$$

• Ill-conditioning in practice: Monitor gradient norm and objective

X $\times\overline{\times}$

Source: Goodfellow et al., 2016

- **•** If gradient norms $||\mathbf{g}||$ increase, GD is not converging since $\mathbf{g} \neq 0$.
- Even if ∥**g**∥ increases, objective may stay approximately constant:

 $\overline{\mathbf{X}}$