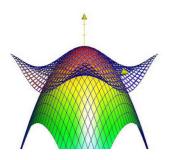
Optimization in Machine Learning

First order methods Weaknesses of GD – Curvature

× 0 0 × 0 × ×



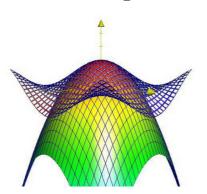
Learning goals

- Effects of curvature
- Step size effect in GD

REMINDER: LOCAL QUADRATIC GEOMETRY

Locally approximate smooth function by quadratic Taylor polynomial:

$$f(\mathbf{x}) \approx f(\tilde{\mathbf{x}}) + \nabla f(\tilde{\mathbf{x}})^{\top} (\mathbf{x} - \tilde{\mathbf{x}}) + \frac{1}{2} (\mathbf{x} - \tilde{\mathbf{x}})^{\top} \nabla^2 f(\tilde{\mathbf{x}}) (\mathbf{x} - \tilde{\mathbf{x}})$$



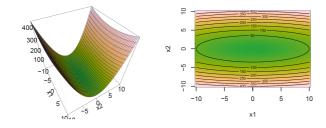
Source: daniloroccatano.blog.

REMINDER: LOCAL QUADRATIC GEOMETRY / 2

Study Hessian $\mathbf{H} = \nabla^2 f(\mathbf{x}^{[t]})$ in GD to discuss effect of curvature

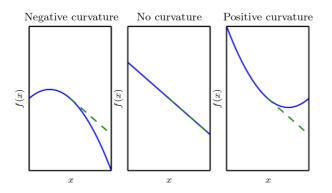
Recall for quadratic forms:

- Eigenvector \mathbf{v}_{max} (\mathbf{v}_{min}) is direction of largest (smallest) curvature
- H called ill-conditioned if $\kappa(\mathbf{H}) = |\lambda_{\max}|/|\lambda_{\min}|$ is large



EFFECTS OF CURVATURE

Intuitively, curvature determines reliability of a GD step



× × ×

Quadratic objective *f* (blue) with gradient approximation (dashed green). Left: *f* decreases faster than ∇f predicts. Center: ∇f predicts decrease correctly. Right: *f* decreases more slowly than ∇f predicts. (Source: Goodfellow et al., 2016)

EFFECTS OF CURVATURE / 2

× × 0 × × ×

Worst case: H is ill-conditioned. What does this mean for GD?

• Quadratic Taylor polynomial of *f* around $\tilde{\mathbf{x}}$ (with gradient $\mathbf{g} = \nabla f$)

$$f(\mathbf{x}) \approx f(\tilde{\mathbf{x}}) + (\mathbf{x} - \tilde{\mathbf{x}})^{\top} \mathbf{g} + \frac{1}{2} (\mathbf{x} - \tilde{\mathbf{x}})^{\top} \mathbf{H} (\mathbf{x} - \tilde{\mathbf{x}})$$

• GD step with step size $\alpha > 0$ yields

$$f(\tilde{\boldsymbol{x}} - \alpha \boldsymbol{g}) \approx f(\tilde{\boldsymbol{x}}) - \alpha \boldsymbol{g}^{\top} \boldsymbol{g} + \frac{1}{2} \alpha^2 \boldsymbol{g}^{\top} \boldsymbol{H} \boldsymbol{g}$$

• If $\mathbf{g}^{\top} \mathbf{H} \mathbf{g} > \mathbf{0}$, we can solve for optimal step size α^* :

$$\alpha^* = \frac{\mathbf{g}^\top \mathbf{g}}{\mathbf{g}^\top \mathbf{H} \mathbf{g}}$$

• If **g** points along \mathbf{v}_{max} (largest curvature), optimal step size is

$$\alpha^* = \frac{\mathbf{g}^\top \mathbf{g}}{\mathbf{g}^\top \mathbf{H} \mathbf{g}} = \frac{\mathbf{g}^\top \mathbf{g}}{\lambda_{\max} \mathbf{g}^\top \mathbf{g}} = \frac{1}{\lambda_{\max}}.$$

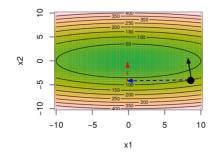
 \Rightarrow Large step sizes can be problematic.

 $\bullet~$ If g points along v_{min} (smallest curvature), then analogously

$$\alpha^* = \frac{1}{\lambda_{\min}}.$$

- \Rightarrow *Small* step sizes can be problematic.
- Ideally: Perform large step along v_{min} but small step along v_{max} .

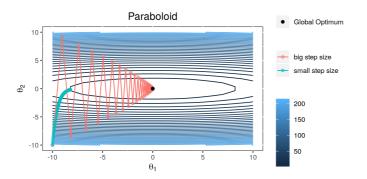
- What if g is not aligned with eigenvectors?
- $\bullet\,$ Consider 2D case: Decompose g (black) into v_{max} and v_{min}



× 0 0 × × ×

- Ideally, perform large step along v_{min} but small step along v_{max}
- However, gradient almost only points along vmax

- GD is not aware of curvatures and can only walk along g
- Large step sizes result in "zig-zag" behaviour.
- Small step sizes result in weak performance.



× × 0 × × ×

Poorly conditioned quadratic form. GD with large (red) and small (blue) step size. For both, convergence to optimum is slow.

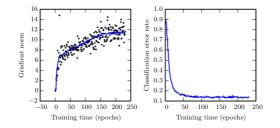
• Large step sizes for ill-conditioned Hessian can even increase

$$f(\tilde{\mathbf{x}} - \alpha \mathbf{g}) \approx f(\tilde{\mathbf{x}}) - \alpha \mathbf{g}^{\top} \mathbf{g} + \frac{1}{2} \alpha^2 \mathbf{g}^{\top} \mathbf{H} \mathbf{g}$$

if

$$\frac{1}{2}\alpha^2 \mathbf{g}^\top \mathbf{H} \mathbf{g} > \alpha \mathbf{g}^\top \mathbf{g} \quad \Leftrightarrow \quad \alpha > 2\frac{\mathbf{g}^\top \mathbf{g}}{\mathbf{g}^\top \mathbf{H} \mathbf{g}}.$$

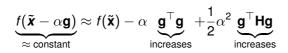
• Ill-conditioning in practice: Monitor gradient norm and objective



× 0 0 × 0 × ×

Source: Goodfellow et al., 2016

- If gradient norms $\|\mathbf{g}\|$ increase, GD is not converging since $\mathbf{g} \neq \mathbf{0}$.
- Even if **||g||** increases, objective may stay approximately constant:



× 0 0 × 0 × ×