
Interpretable Machine Learning

Shapley
SHAP (SHapley Additive exPlanation)

Learning goals
Recall order- and set-based definitions of
Shapley values in ML

Interpret predictions via additive Shapley
decomposition

Understand SHAP as surrogate-based
model

Understand SHAP properties



SHAPLEY VALUES IN ML - A SHORT RECAP
Shapley values (order definition): Average over marginal contributions
across all permutations of feature indices τ ∈ Π:

ϕj(x) =
1
p!

∑
τ∈Π

f̂Sτ
j ∪{j}(xSτ

j ∪{j})− f̂Sτ
j
(xSτ

j
)︸ ︷︷ ︸

marginal contribution of feature j

For each permutation τ , determine coalition Sτ
j : features before j in τ

In f̂S , features not in S are marginalized (e.g., randomly imputed)

Compute marginal contribution of adding j to Sτ
j via the difference above

Average over all p! permutations (in practice, over M << p!)

Alternative (set definition): Average marginal contribution over all subsets,
weighted by their relative number of appearances in permutations:

ϕj(x) =
∑

S⊆{1,...,p}\{j}

|S|!(p − |S| − 1)!
p!

[
f̂S∪{j}(xS∪{j})− f̂S(xS)

]
.
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SHAPLEY VALUES IN ML - EXAMPLE
Example (Bike sharing data):

Train random forest using humidity (hum), temperature (temp),
windspeed (ws)

Consider observation of interest x with prediction f̂ (x) = 2573

Mean prediction Ex [̂f (x)] = 4515

Compute exact Shapley value for x for feature hum:

S S ∪ {j} f̂S f̂S∪{j} weight
∅ hum 4515 4635 2/6

temp temp, hum 3087 3060 1/6
ws ws, hum 4359 4450 1/6

temp, ws temp, ws, hum 2623 2573 2/6

⇒ ϕhum(x) = 2
6 (4635−4515)+ 1

6 (3060−3087)+ 1
6 (4450−4359)+ 2

6 (2573−2623) = 34

⇒ Analogously ϕtemp(x) = −1654, ϕws(x) = −322
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FROM SHAPLEY VALUES TO SHAP

Shapley value interpretation (for x):

hum (+34) pushes pred. above
baseline (= average prediction).

temp (−1654) and ws (−322)
pull prediction below baseline.

Together, they explain full deviation
from average prediction.

hum = 51.58

temp = 5.16

windspeed = 16.96

−1500 −1000 −500 0
phi

Actual prediction:  2572.67 ;
Average prediction:  4515.05

Shapley-based additive decomposition of prediction for x gives insights on
how features shift prediction from baseline E(̂f ):

f̂ (x)︸︷︷︸
actual prediction

= ϕ0︸︷︷︸
EX [̂f (X)]

+
∑

j∈{hum,temp,ws} ϕj(x)

2573 = 4515 +
(
34 − 1654 − 322

)
= 4515 − 1942

⇝ Like a LM evaluated at x: global intercept ϕ0 plus per-feature contribs ϕj(x).

SHAP Motivation: Can we efficiently estimate this Shapley-based additive
decomp. of f̂ (x) via a surrogate model (while preserving Shapley axioms)?
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SHAP FRAMEWORK “Lundberg et al.” 2017

SHAP expresses the prediction of x as a sum of contribs from each feature:

g(z′) = ϕ0 +
∑p

j=1 ϕjz′
j

z′ ∈ {0, 1}p: simplified binary input referring to a coalition (coal. vector)

z′
j = 1: feature j is "present" ⇒ use xj in model evaluation

z′
j = 0: feature j is "absent"
⇒ influence of xj is removed via marginalization over a reference distrib.

SHAP as a theoretical framework: Fit a surrogate model g(z′) satisfying
Shapley axioms and recovering f̂ (x) when all features are "present":

f̂ (x) = g(1) = ϕ0 +
∑p

j=1 ϕj

Evaluation of g(z′): Let S = {j : z′
j = 1} be the active coalition. Then:

g(z′) ≈ E[̂f (X) | XS = xS] (conditional expectation)

g(z′) ≈ EX−S [̂f (xS,X−S)] (marginal expectation, i.e., PD function)

Note: Practical implementations (e.g., KernelSHAP) use the marginal
expectation, approximated via random imputations from background data.
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SHAP FRAMEWORK “Lundberg et al.” 2017

SHAP defines an additive surrogate g(z′) over a binary input z′ ∈ {0, 1}p:

g
(

z′(k)
)
= ϕ0 +

p∑
j=1

ϕjz
′(k)
j

z′(k): coalition vector
subset of features

ϕ0: baseline E[̂f (X)]

ϕj : feature attribution
marginal effect of j in
coalition
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SHAP FRAMEWORK “Lundberg et al.” 2017

SHAP defines an additive surrogate g(z′) over a binary input z′ ∈ {0, 1}p:

g
(

z′(k)
)
= ϕ0 +

p∑
j=1

ϕjz
′(k)
j

g(z′(k)): approx. pre-
diction for coalition

ϕj : Shapley value

Additive Feature Attribution

Next: How do we estimate the Shapley values ϕj efficiently?
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PROPERTIES
Local Accuracy

f̂ (x) = g (z′) = ϕ0 +

p∑
j=1

ϕjz′
j

Intuition: If coalition includes all features (z′ = (z′
1, . . . , z

′
p)

⊤ = (1, . . . , 1)⊤),
the attributions ϕj and the baseline ϕ0 sum up to the original model output f̂ (x)

Local accuracy corresponds to axiom of efficiency in Shapley game theory

© Interpretable Machine Learning – 6 / 6



PROPERTIES
Local Accuracy

f̂ (x) = g (z′) = ϕ0 +

p∑
j=1

ϕjz′
j

Missingness
z′

j = 0 =⇒ ϕj = 0

Intuition: A "missing" feature (whose value is imputed) gets zero attribution
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PROPERTIES
Local Accuracy

f̂ (x) = g (z′) = ϕ0 +

p∑
j=1

ϕjz′
j

Missingness
z′

j = 0 =⇒ ϕj = 0

Consistency (Let z′(k)−j refer to z′(k)
j = 0)

For any two models f̂ and f̂ ′, if for all inputs z′(k) ∈ {0, 1}p

f̂ ′x
(

z′(k)
)
− f̂ ′x

(
z′(k)−j

)
≥ f̂x

(
z′(k)

)
− f̂x

(
z′(k)−j

)
=⇒ ϕj

(
f̂ ′, x

)
≥ ϕj (̂f , x)

Intution: If a model changes so that the marginal contribution of a feature
value increases or stays the same, the Shapley value also increases or stays
the same

Consistency implies Shapley’s axioms of additivity, dummy, symmetry.
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