
Interpretable Machine Learning

Local Explanations:
Increasing Trust in Explanations

Learning goals
Understand the aspects that undermine
users’ trust in an explanation

Learn diagnostic tools that could increase
trust



MOTIVATION & IMPORTANT PROPERTIES

Local explanations should not only make a model interpretable but also
reveal if the model is trustworthy

Interpretable: “Why did the model come up with this decision?”

Trustworthy: “How certain is this explanation?”
1 accurate insights into the inner workings of our model

Failure case: generation is based on inputs in areas where the
model was trained with little or no training data (extrapolation)

2 robust (i.e. low variance)
Expectation: similar explanations for similar data points with
similar predictions
However, multiple sources of uncertainty exist

⇝ measure how robust an IML method is to small changes in the
input data or parameters

⇝ Is an observation out-of-distribution?

Failing in one of these⇝ undermining users’ trust in the explanations
⇝ undermining trust in the model
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OUT-OF-DISTRIBUTION (OOD) DETECTION

Models are unreliable in areas with little data support
⇝ explanations from local explanation methods are unreliable

For local explanation methods, the following components could be
out-of-distribution (OOD):

The data for LIME’s surrogate model
Counterfactuals themselves
Shapley value’s permuted obs. to calculate the marginal contribs
ICE curves grid data points

Two very simple and intuitive approaches
Classifier for out-of-distribution
Clustering

More complicated also possible, e.g., variational autoencoders
“Daxberger et al.” 2020

© Interpretable Machine Learning – 2 / 7

https://arxiv.org/abs/1912.05651


OUT-OF-DISTRIBUTION (OOD) DETECTION

Models are unreliable in areas with little data support
⇝ explanations from local explanation methods are unreliable

For local explanation methods, the following components could be
out-of-distribution (OOD):

The data for LIME’s surrogate model
Counterfactuals themselves
Shapley value’s permuted obs. to calculate the marginal contribs
ICE curves grid data points

Two very simple and intuitive approaches
Classifier for out-of-distribution
Clustering

More complicated also possible, e.g., variational autoencoders
“Daxberger et al.” 2020

© Interpretable Machine Learning – 2 / 7

https://arxiv.org/abs/1912.05651


OUT-OF-DISTRIBUTION (OOD) DETECTION

Models are unreliable in areas with little data support
⇝ explanations from local explanation methods are unreliable

For local explanation methods, the following components could be
out-of-distribution (OOD):

The data for LIME’s surrogate model
Counterfactuals themselves
Shapley value’s permuted obs. to calculate the marginal contribs
ICE curves grid data points

Two very simple and intuitive approaches
Classifier for out-of-distribution
Clustering

More complicated also possible, e.g., variational autoencoders
“Daxberger et al.” 2020

© Interpretable Machine Learning – 2 / 7

https://arxiv.org/abs/1912.05651


OOD DETECTION: OOD-CLASSIFIER

Problem: we have only in-distribution data

Idea: Hallucinate new (ood) data by randomly sampling data points

⇝ Learn a binary classifier to distinguish between the origins of the data

Study whether an explanation approach can be fooled “Dylan Slack et al.” 2020

Hide bias in the true (deployed) model, but use an unbiased model
for all out-of-distribution samples

⇝ Important way to diagnose an explanation approach
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OOD DETECTION: CLUSTERING VIA DBSCAN

DBSCAN is a data clustering algorithm “Martin Ester et al.” 1996

(Density-Based Spatial Clustering of Applications with Noise)

For this method, we define an ϵ-neighborhood:
Given a dataset X = {x(i)}n

i=1, an ϵ-neighborhood for x ∈ X is defined as

Nϵ(x) = {x(i) ∈ X |d(x, x(i)) ≤ ϵ}.

d(·) is a distance measure (e.g., Euclidean or Gower distance)

Core observations x
Have at least m data points within Nϵ(x)
Forms an own cluster with all its neighborhood points

Border points
Within Nϵ(x)
Part of a cluster defined by a core point

Noise points
Are not within Nϵ(x)
Not part of any cluster
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OUT-OF-DISTRIBUTION DETECTION

Example for DBSCAN, circles display ϵ-neighborhoods, m = 4

Green points A and B are core
points and form one cluster since
they lie in each others
neighborhood, all yellow points
are border points of this cluster

Since D is not part of the
neighborhood of core points, it is
a noise point

In-distribution: new point lies
within a cluster

Out-of-distribution: new point lies
outside the clusters

Disadvantages:
Depending on the distance metric d(·), DBSCAN could suffer from
the “curse of dimensionality”
The choice of ϵ and m is not clear a-priori
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ROBUSTNESS

Differentiate between different kinds of uncertainty:
1 Explanation uncertainty: Change of explanation if we repeat the

process, e.g., the explanation could differ depending on which
subset of data we use for the expl. method and which hyperparams

2 Process uncertainty: Change of explanation if the underlying
model is changed
⇝ are ML models non-robust, e.g., because they are trained on
noisy data?

We focus on explanation uncertainty
Even with the same model and same (or similar) data points, we can
receive different explanations
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ROBUSTNESS MEASURE FOR LIME AND SHAP

Objective: Similar explanations for similar inputs (in a neighborhood)

For LIME and SHAP, notion of stability based on locally Lipschitz
continuity “Alvarez-Melis and Jaakkola” 2018 :
An explanation method g : X → Rm is locally Lipschitz if

for every x0 ∈ X there exist δ > 0 and ω ∈ R
such that ||x − x0|| < δ implies ||g(x)− g(x0)|| < ω||x − x0||

Note that, for LIME, g returns the m coefficients of the surrogate model

According to this, we can quantify the robustness of explanation models
in terms of ω:
⇝ The closer ω is to 0, the more robust our explanation method is

ω is rarely known a-priori but it could be estimated as follows:

ω̂X (x) ∈ argmax
x(i)∈Nϵ(x)

||g(x)− g(x(i))||2
d(x, x(i))

,

where Nϵ(x) is the ϵ-neighborhood of x
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