Interpretable Machine Learning

Local Explanations:
Increasing Trust in Explanations
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MOTIVATION & IMPORTANT PROPERTIES

@ Local explanations should not only make a model interpretable but also
reveal if the model is trustworthy
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@ Local explanations should not only make a model interpretable but also
reveal if the model is trustworthy

@ Interpretable: “Why did the model come up with this decision?”
@ Trustworthy: “How certain is this explanation?”
@ accurate insights into the inner workings of our model

o Failure case: generation is based on inputs in areas where the
model was trained with little or no training data (extrapolation)
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@

@ Local explanations should not only make a model interpretable but also
reveal if the model is trustworthy

@ Interpretable: “Why did the model come up with this decision?”

@ Trustworthy: “How certain is this explanation?”
@ accurate insights into the inner workings of our model
o Failure case: generation is based on inputs in areas where the
model was trained with little or no training data (extrapolation)
© robust (i.e. low variance)
e Expectation: similar explanations for similar data points with
similar predictions
e However, multiple sources of uncertainty exist
~» measure how robust an IML method is to small changes in the
input data or parameters
~+ Is an observation out-of-distribution?
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MOTIVATION & IMPORTANT PROPERTIES

@ Local explanations should not only make a model interpretable but also
reveal if the model is trustworthy
@ Interpretable: “Why did the model come up with this decision?”
@ Trustworthy: “How certain is this explanation?”
@ accurate insights into the inner workings of our model
o Failure case: generation is based on inputs in areas where the
model was trained with little or no training data (extrapolation)
© robust (i.e. low variance)
e Expectation: similar explanations for similar data points with
similar predictions
e However, multiple sources of uncertainty exist
~» measure how robust an IML method is to small changes in the
input data or parameters
~+ |s an observation out-of-distribution?
@ Failing in one of these ~» undermining users’ trust in the explanations
~~ undermining trust in the model
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OUT-OF-DISTRIBUTION (OOD) DETECTION

@ Models are unreliable in areas with little data support
~~ explanations from local explanation methods are unreliable
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OUT-OF-DISTRIBUTION (OOD) DETECTION

@ Models are unreliable in areas with little data support
~~ explanations from local explanation methods are unreliable

@ For local explanation methods, the following components could be
out-of-distribution (OOD):

The data for LIME’s surrogate model

Counterfactuals themselves

Shapley value’s permuted obs. to calculate the marginal contribs

ICE curves grid data points
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OUT-OF-DISTRIBUTION (OOD) DETECTION

@

@ Models are unreliable in areas with little data support
~~ explanations from local explanation methods are unreliable

@ For local explanation methods, the following components could be
out-of-distribution (OOD):

The data for LIME’s surrogate model

Counterfactuals themselves

Shapley value’s permuted obs. to calculate the marginal contribs

ICE curves grid data points

@ Two very simple and intuitive approaches
o Classifier for out-of-distribution
e Clustering

@ More complicated also possible, e.g., variational autoencoders
> “Daxberger et al.” 2020
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OOD DETECTION: OOD-CLASSIFIER

@ Problem: we have only in-distribution data
@ Idea: Hallucinate new (ood) data by randomly sampling data points
~ Learn a binary classifier to distinguish between the origins of the data
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OOD DETECTION: OOD-CLASSIFIER

@ Problem: we have only in-distribution data
@ Idea: Hallucinate new (ood) data by randomly sampling data points
~ Learn a binary classifier to distinguish between the origins of the data

@ Study whether an explanation approach can be fooled * » ‘Dylan Siacketal.”2020
e Hide bias in the true (deployed) model, but use an unbiased model
for all out-of-distribution samples

~~ Important way to diagnose an explanation approach
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OOD DETECTION: CLUSTERING VIA DBSCAN

@ DBSCAN is a data clustering algorithm © > ™Martin Ester etal.” 1996
(Density-Based Spatial Clustering of Applications with Noise)
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OOD DETECTION: CLUSTERING VIA DBSCAN

@ DBSCAN is a data clustering algorithm © > ™Martin Ester etal.” 1996
(Density-Based Spatial Clustering of Applications with Noise)

@ For this method, we define an e-neighborhood:
Given a dataset X = {x(}7_,, an e-neighborhood for x € X is defined as

No(x) = {xD e x|d(x,x) < €}.

d(-) is a distance measure (e.g., Euclidean or Gower distance)
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@ DBSCAN is a data clustering algorithm © > ™Martin Ester etal.” 1996
(Density-Based Spatial Clustering of Applications with Noise)

@ For this method, we define an e-neighborhood:
Given a dataset X = {x(}7_,, an e-neighborhood for x € X is defined as

@

No(x) = {xD e x|d(x,x) < €}.

d(-) is a distance measure (e.g., Euclidean or Gower distance)

@ Core observations x

e Have at least m data points within N(x)
e Forms an own cluster with all its neighborhood points
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OOD DETECTION: CLUSTERING VIA DBSCAN

@ DBSCAN is a data clustering algorithm © > ™Martin Ester etal.” 1996
(Density-Based Spatial Clustering of Applications with Noise)

@ For this method, we define an e-neighborhood:
Given a dataset X = {x(}7_,, an e-neighborhood for x € X is defined as

No(x) = {xD e x|d(x,x) < €}.

d(-) is a distance measure (e.g., Euclidean or Gower distance)
@ Core observations x
e Have at least m data points within N(x)
e Forms an own cluster with all its neighborhood points
@ Border points
e Within N, (x)
e Part of a cluster defined by a core point
@ Noise points

e Are not within A/ (x)
o Not part of any cluster
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OUT-OF-DISTRIBUTION DETECTION

A R @ Green points A and B are core
,/ I,.'K"\“\\ points and form one cluster since
e e O they lie in each others
\«‘:\ - % neighborhood, all yellow points
Lo a ot are border points of this cluster
i

Example for DBSCAN, circles display e-neighborhoods, m = 4
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Example for DBSCAN, circles display e-neighborhoods, m = 4
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@ In-distribution: new point lies
within a cluster

Interpretable Machine Learning — 5/7



OUT-OF-DISTRIBUTION DETECTION

Example for DBSCAN, circles display e-neighborhoods, m = 4

Green points A and B are core
points and form one cluster since
they lie in each others
neighborhood, all yellow points
are border points of this cluster
Since D is not part of the
neighborhood of core points, it is
a noise point

In-distribution: new point lies
within a cluster
Out-of-distribution: new point lies
outside the clusters

Interpretable Machine Learning — 5/7




OUT-OF-DISTRIBUTION DETECTION

A R @ Green points A and B are core
',’ ,.'ﬂ"\"\ points and form one cluster since
ol ol DT g they lie in each others

b neighborhood, all yellow points

’ Y \ ,’ . .
g are border points of this cluster
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N J @ Since D is not part of the
Rl neighborhood of core points, it is

Example for DBSCAN, circles display e-neighborhoods, m = 4

a noise point
@ In-distribution: new point lies
within a cluster

@ Out-of-distribution: new point lies
outside the clusters

@ Disadvantages:
e Depending on the distance metric d(-), DBSCAN could suffer from
the “curse of dimensionality”
e The choice of € and m is not clear a-priori
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ROBUSTNESS

@ Differentiate between different kinds of uncertainty:
@ Explanation uncertainty: Change of explanation if we repeat the
process, €.g., the explanation could differ depending on which
subset of data we use for the expl. method and which hyperparams
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@ Differentiate between different kinds of uncertainty:

@ Explanation uncertainty: Change of explanation if we repeat the
process, e.g., the explanation could differ depending on which
subset of data we use for the expl. method and which hyperparams

@ Process uncertainty: Change of explanation if the underlying
model is changed
~ are ML models non-robust, e.g., because they are trained on
noisy data?
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ROBUSTNESS

@

@ Differentiate between different kinds of uncertainty:

@ Explanation uncertainty: Change of explanation if we repeat the
process, e.g., the explanation could differ depending on which
subset of data we use for the expl. method and which hyperparams

@ Process uncertainty: Change of explanation if the underlying
model is changed
~ are ML models non-robust, e.g., because they are trained on
noisy data?

@ We focus on explanation uncertainty

e Even with the same model and same (or similar) data points, we can
receive different explanations
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ROBUSTNESS MEASURE FOR LIME AND SHAP

@ Objective: Similar explanations for similar inputs (in a neighborhood)
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ROBUSTNESS MEASURE FOR LIME AND SHAP

@ Objective: Similar explanations for similar inputs (in a neighborhood)
@ For LIME and SHAP, notion of stability based on locally Lipschitz

continuity > “Alvarez-Melis and Jaakkola” 2018 +
An explanation method g : X — R™ is locally Lipschitz if

o forevery xo € X thereexistd > 0andw € R
e such that ||x — Xo|| < d implies ||g(x) — g(Xo)|| < w]|x — Xo]

Note that, for LIME, g returns the m coefficients of the surrogate model
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@ Objective: Similar explanations for similar inputs (in a neighborhood)
@ For LIME and SHAP, notion of stability based on locally Lipschitz

continuity ' » “Aivarez-Melis and Jaakkola” 2018 :
An explanation method g : X — R™ is locally Lipschitz if
o forevery xo € X thereexistd > 0andw € R
e such that ||x — Xo|| < d implies ||g(x) — g(Xo)|| < w]|x — Xo]

Note that, for LIME, g returns the m coefficients of the surrogate model

@ According to this, we can quantify the robustness of explanation models
in terms of w:

~ The closer w is to 0, the more robust our explanation method is

Interpretable Machine Learning — 7/7


https://arxiv.org/abs/1806.08049

ROBUSTNESS MEASURE FOR LIME AND SHAP

@ Objective: Similar explanations for similar inputs (in a neighborhood)
@ For LIME and SHAP, notion of stability based on locally Lipschitz

continuity ' » “AlarezMelis and Jaakkola® 2018 ;
An explanation method g : X — R™ is locally Lipschitz if

o forevery xo € X thereexistd > 0andw € R

e such that ||x — Xo|| < d implies ||g(x) — g(Xo)|| < w]|x — Xo]
Note that, for LIME, g returns the m coefficients of the surrogate model

@ According to this, we can quantify the robustness of explanation models
in terms of w:
~ The closer w is to 0, the more robust our explanation method is

@ w is rarely known a-priori but it could be estimated as follows:

_ ()
Ox(x) € arg max l9(x) g(x )HZ,
x(NeN(x) d(X, X(’))

where N (x) is the e-neighborhood of x
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