Interpretable Machine Learning

Counterfactual Explanations (CEs)
Methods & Discussion

Learning goals
@ See two strategies to generate CEs
@ Know problems and limitations of CEs

duration




OVERVIEW OF COUNTERFACTUAL METHODS

Many methods exist to generate counterfactuals, they mainly differ in:

@ Target: Most support classification; few extend to regression
~~ Recent work extends CEs to other ML tasks (un-, semi-,
self-supervised)
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Many methods exist to generate counterfactuals, they mainly differ in:
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@ Target: Most support classification; few extend to regression
~~ Recent work extends CEs to other ML tasks (un-, semi-,
self-supervised)

@ Data type: Focus is on tabular data; little work on text, vision, audio

@ Feature space: Some handle only numerical features; few support mixed
data types

@ Objectives: From core goals like sparsity and plausibility to emerging
aims such as fairness, personalization, and robustness

@ Model access: Methods range from model-specific (requiring access to
model internals/gradients) to model-agnostic (using only prediction funcs)

@ Optimization: From gradient-based (differentiable models) and
mixed-integer programming (linear models) to gradient-free methods
(e.g., genetic algorithms)

@ Rashomon Effect: Many methods return one CE, some diverse sets of
CEs, others prioritize CEs, or let the user choose
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FIRST OPTIMIZATION-BASED CE METHOD

> “Wachter et. al” 2018

Introduced CEs in context of ML predictions by solving

P X — x|

. )\ ’fx/ _ N2
arg min max w"'zja MAD;
Otarget (F(X'),¥")

Oproximity (X' ,X)

® Orger €NSUres prediction flips to y’ (by increasing weight \)
@ Oproximity PENAlizes deviations from x, rescaled by median abs. deviation:
MAD; = medic 1. (X" — medieqs,...ny (x))))
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> “Wachter et. al” 2018

@

Introduced CEs in context of ML predictions by solving

P X — x|

. )\ ’fx/ _ N2
arg min max w+zj:1 MAD;
Otarget (F(X'),¥")

Oproximity (X' ,X)

® Orger €NSUres prediction flips to y’ (by increasing weight \)
@ Oproximity PENAlizes deviations from x, rescaled by median abs. deviation:
MAD; = medic 1. (X" — medieqs,...ny (x))))

Approach: Alternating optimization over x’ and \

@ Start with an initial A (controls emphasis on Orget VS. Oproximity)

@ Use a gradient-free optimizer (e.g., Nelder-Mead) to minimize over x’

@ If prediction constraint not satisfied (f(x') # y’), increase X and repeat
~ ) serves as soft constraint, gradually enforcing prediction validity
f(x)=y

@ lteratively shift focus: 1. achieve prediction validity, 2. minimize proximity
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LIMITATIONS OF WACHTER’S APPROACH

@

Manual tuning: No principled way to set A; requires iterative increase

Asymmetric focus: Early iterations dominated by minimizing target loss
Limited feature support: Proximity term defined only for numerical feats
No additional objectives: Ignores sparsity, plausibility, fairness, diversity

Single solution: Returns one CE; no support for diverse or ranked CEs
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MULTI-OBJECTIVE CE > “Dandl et al.” 2020

@ Multi-Objective Counterfactual Explanations (MOC): Instead of
collapsing objectives into a single obj., optimize all 4 obj. simultaneously

arg min (Otarget(?(x/)v .y/)v oproximity(x/» x)a Osparse(xla X)v Oplausible(xla X)) .
x/

@ Avoids using/tuning of weights (e.g., A); returns Pareto-optimal set
@ Uses an adjusted multi-objective genetic algo. (NSGA-II) for mixed feats
@ Outputs diverse CEs representing different trade-offs between objectives
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EXAMPLE: CREDIT DATA

Model: SVM with RBF kernel
x: First data point of credit data with P(y = good) = 0.34

MOC (with default parameters) returned 69 valid CEs after 200 iterations

°
°

@ Goal: Increase the probability to desired outcome [0.5, 1]

°

@ All CEs modified credit duration; many also adjusted credit amount
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EXAMPLE: CREDIT DATA > oanaietai 200

@ Feature changes can be visualized using parallel and 2D surface plots
@ Parallel plot: All CEs had values equal to or smaller than the values of x

@
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Parallel plot: Grey lines = CEs x’, blue line = x.
Features without changes omitted.
Bold numbers denote numeric ranges.
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EXAMPLE: CREDIT DATA > oanaietai 200

@ Feature changes can be visualized using parallel and 2D surface plots

@ Parallel plot: All CEs had values equal to or smaller than the values of x

@ Surface plot: CEs in lower-left appear distant, but lie in high-density
regions near training data (as shown by histograms)
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Parallel plot: Grey lines = CEs x’, blue line = x.

Features without changes omitted.
Bold numbers denote numeric ranges.

»-
@
3
3
S

0.7
0.6
05
0.4
0.3

10000

credit.amount

@
3
3
S

duration

Surface plot: White dot = x, black dots = CEs x’.
Histograms: Marginal distribution of training data X.
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PROBLEMS, PITFALLS, & LIMITATIONS

@ lllusion of model understanding: CEs explain ML decisions by pointing
to few specific alternatives, reducing complexity but offering limited
explanatory power
~~ Psychologists have shown that although perceived model
understanding of end-users increases, the objective model understanding
remains unchanged
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model bias

@ Confusing Model and Real-World: Model explanations are not easily
transferable to reality
~~ End-users must know that CEs explain the model, not the real world

@ Disclosing too much information: CEs can reveal too much information
about the model and help potential attackers
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resources

@ Actionability vs. fairness: Focusing on actionable changes may
hinder contestability
~ E.g., if ethnicity is not changed in a CE since it is not actionable, this
could hide racial biases in the model

@ Assumption of constant model: To provide guidance for the future,
CEs assume that their underlying model does not change in the future
~ in reality this assumption is often violated making CEs unreliable

@ Attacking CEs: Researchers can create models with great performance,
which generate arbitrary explanations specified by the ML developer
~> how faithful are CEs to the models underlying mechanism?
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