
Interpretable Machine Learning

Counterfactual Explanations (CEs)
Methods & Discussion

Learning goals
See two strategies to generate CEs

Know problems and limitations of CEs



OVERVIEW OF COUNTERFACTUAL METHODS
Many methods exist to generate counterfactuals, they mainly differ in:

Target: Most support classification; few extend to regression
⇝ Recent work extends CEs to other ML tasks (un-, semi-,
self-supervised)

Data type: Focus is on tabular data; little work on text, vision, audio

Feature space: Some handle only numerical features; few support mixed
data types

Objectives: From core goals like sparsity and plausibility to emerging
aims such as fairness, personalization, and robustness

Model access: Methods range from model-specific (requiring access to
model internals/gradients) to model-agnostic (using only prediction funcs)

Optimization: From gradient-based (differentiable models) and
mixed-integer programming (linear models) to gradient-free methods
(e.g., genetic algorithms)

Rashomon Effect: Many methods return one CE, some diverse sets of
CEs, others prioritize CEs, or let the user choose
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FIRST OPTIMIZATION-BASED CE METHOD
“Wachter et. al” 2018

Introduced CEs in context of ML predictions by solving

argmin
x′

max
λ

λ (̂f (x′)− y ′)2︸ ︷︷ ︸
otarget (̂f (x′),y′)

+
∑p

j=1

|x ′
j − xj |
MADj︸ ︷︷ ︸

oproximity (x′,x)

otarget ensures prediction flips to y ′ (by increasing weight λ)
oproximity penalizes deviations from x, rescaled by median abs. deviation:

MADj = medi∈{1,...,n}(|x
(i)
j − medk∈{1,...,n}(x

(k)
j )|))

Approach: Alternating optimization over x′ and λ

Start with an initial λ (controls emphasis on otarget vs. oproximity )
Use a gradient-free optimizer (e.g., Nelder-Mead) to minimize over x′

If prediction constraint not satisfied (̂f (x′) ̸= y ′), increase λ and repeat
⇝ λ serves as soft constraint, gradually enforcing prediction validity
f̂ (x′) = y ′

Iteratively shift focus: 1. achieve prediction validity, 2. minimize proximity
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LIMITATIONS OF WACHTER’S APPROACH

Manual tuning: No principled way to set λ; requires iterative increase

Asymmetric focus: Early iterations dominated by minimizing target loss

Limited feature support: Proximity term defined only for numerical feats

No additional objectives: Ignores sparsity, plausibility, fairness, diversity

Single solution: Returns one CE; no support for diverse or ranked CEs
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MULTI-OBJECTIVE CE “Dandl et al.” 2020

Multi-Objective Counterfactual Explanations (MOC): Instead of
collapsing objectives into a single obj., optimize all 4 obj. simultaneously

argmin
x′

(
otarget (̂f (x′), y ′), oproximity(x′, x), osparse(x′, x), oplausible(x′,X)

)
.

Avoids using/tuning of weights (e.g., λ); returns Pareto-optimal set

Uses an adjusted multi-objective genetic algo. (NSGA-II) for mixed feats

Outputs diverse CEs representing different trade-offs between objectives
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EXAMPLE: CREDIT DATA

Model: SVM with RBF kernel

x: First data point of credit data with P(y = good) = 0.34

Goal: Increase the probability to desired outcome [0.5, 1]

MOC (with default parameters) returned 69 valid CEs after 200 iterations

All CEs modified credit duration; many also adjusted credit amount
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EXAMPLE: CREDIT DATA “Dandl et al.” 2020

Feature changes can be visualized using parallel and 2D surface plots

Parallel plot: All CEs had values equal to or smaller than the values of x

Surface plot: CEs in lower-left appear distant, but lie in high-density
regions near training data (as shown by histograms)
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Parallel plot: Grey lines = CEs x′, blue line = x.
Features without changes omitted.

Bold numbers denote numeric ranges.
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Surface plot: White dot = x, black dots = CEs x′.
Histograms: Marginal distribution of training data X.
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PROBLEMS, PITFALLS, & LIMITATIONS

Illusion of model understanding: CEs explain ML decisions by pointing
to few specific alternatives, reducing complexity but offering limited
explanatory power
⇝ Psychologists have shown that although perceived model
understanding of end-users increases, the objective model understanding
remains unchanged

Right metric: Similarity measures are crucial to find good CEs (depends
on context/domain)
⇝ e.g., L1 can be reasonable for tabular data but not for image data
⇝ sparsity desirable for end-users but not for auditors searching for
model bias

Confusing Model and Real-World: Model explanations are not easily
transferable to reality
⇝ End-users must know that CEs explain the model, not the real world

Disclosing too much information: CEs can reveal too much information
about the model and help potential attackers
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PROBLEMS, PITFALLS, & LIMITATIONS

Rashomon effect: One, few, all? Which CEs should be shown to the
end-user?
⇝ No universal answer; depends on user goals, cognitive load, and
resources

Actionability vs. fairness: Focusing on actionable changes may
hinder contestability
⇝ E.g., if ethnicity is not changed in a CE since it is not actionable, this
could hide racial biases in the model

Assumption of constant model: To provide guidance for the future,
CEs assume that their underlying model does not change in the future
⇝ in reality this assumption is often violated making CEs unreliable

Attacking CEs: Researchers can create models with great performance,
which generate arbitrary explanations specified by the ML developer
⇝ how faithful are CEs to the models underlying mechanism?
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