
Interpretable Machine Learning

Intro to IML
Dimensions of Interpretability

Learning goals
Difference between intrinsic,
model-specific, and model-agnostic
interpretability

Different types of explanations

Local, global, and regional explanations

Model/learner explanation (with(out) refits)

Levels of interpretability



INTRINSIC, MODEL-SPECIFIC, MODEL-AGNOSTIC

Model Interpretation

Interpretable Models Black Box Models

Model-specific Methods Model-agnostic Methods

Intrinsically Interpretable Models:

Simple model structure (e.g., weighted sum or tree)

Examples: GLMs, decision trees

Pro: Additional IML methods not necessarily required

Con:
Limited model complexity can reduce performance,
can still be hard to interpret (many features/interactions)

a0

a1 a2

a3 a4

a5 a6

x1 < 0.3 x1 ≥ 0.3

x1 < 0.6 x1 ≥ 0.6

x2 < 0.2 x2 ≥ 0.2
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INTRINSIC, MODEL-SPECIFIC, MODEL-AGNOSTIC

Model Interpretation

Interpretable Models Black Box Models

Model-specific Methods Model-agnostic Methods

Model-specific Methods:

Designed for specific model types (e.g., NNs)

Examples:
Gini importance of tree-based models,
Layer-wise relevance propagation (LRP)

Pro: Exploit model structure

Con: Restricted to specific model class

© Interpretable Machine Learning – 1 / 6



INTRINSIC, MODEL-SPECIFIC, MODEL-AGNOSTIC

Model Interpretation

Interpretable Models Black Box Models

Model-specific Methods Model-agnostic Methods

Model-agnostic Methods:

In ML: Tune over many model classes
⇝ Unknown which model is best / deployed
⇝ Need for IML methods that work for any model

Applied after training (post-hoc)

Applicable to intrinsically interpretable models
⇝ provides insights into explanations
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TYPES OF EXPLANATIONS

Model Interpretation

Feature-based Explanations Data Attribution Counterfactual Explanations

Feature-based Explanations:

Analyze the role of individual features in model behavior.

Types of feature-based explanations:
Feature Importance
Feature Effects
Feature Interactions

Common principle: Vary or perturb feature values and observe changes
in predictions, variance, or performance.
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TYPES OF EXPLANATIONS

Model Interpretation

Feature-based Explanations Data Attribution Counterfactual Explanations

Feature Importance quantifies relevance of features, e.g., their contribution to
model prediction, predictive performance, or prediction variance.

Model-agnostic methods: PFI, . . .

Pendant in linear models: t-statistic,
p-value (significant effect)
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TYPES OF EXPLANATIONS

Model Interpretation

Feature-based Explanations Data Attribution Counterfactual Explanations

Feature Effects indicate changes (direction and magnitude) in model
prediction due to changes in feature values.

Model-agnostic methods:
ICE curves, PD plots . . .

Pendant in linear models:
Weights / coefficients θj

Further examples: ALE,
SHAP, and LIME
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TYPES OF EXPLANATIONS

Model Interpretation

Feature-based Explanations Data Attribution Counterfactual Explanations

Feature Interaction:
How combinations of features jointly
affect predictions.

Model-agnostic methods:
Friedman’s H-statistic

Pendant in linear models:
Coefficients of interaction terms θjk
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TYPES OF EXPLANATIONS

Model Interpretation

Feature-based Explanations Data Attribution Counterfactual Explanations

Data Attribution: Identify training instances that most influenced a prediction.

Example: A model should distinguish muffins and dogs.

Question: Why does it misclassify this dog image (test point) as a muffin?
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TYPES OF EXPLANATIONS

Model Interpretation

Feature-based Explanations Data Attribution Counterfactual Explanations

Data Attribution: Identify training instances that most influenced a prediction.

Example: A model should distinguish muffins and dogs.

Approach: Measure how perturbations to training data affect prediction/loss.

⇝ Influential training instances drive
prediction of test points.

⇝ If these resemble muffins, the
model may predict muffin instead
of dog.
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TYPES OF EXPLANATIONS

Model Interpretation

Feature-based Explanations Data Attribution Counterfactual ExplanationsCounterfactual Explanations

Counterfactual Explanations:

Identify smallest necessary change in
feature values so that a desired outcome
is predicted

Contrastive explanations

Diverse counterfactuals

Feasible & actionable explanations
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TYPES OF EXPLANATIONS

Model Interpretation

Feature-based Explanations Data Attribution Counterfactual Explanations

Example (loan application):

Avishek Anand �39

Counterfactuals and Recourse

What can a person do to obtain a favorable prediction from a given model ?

Bachelor > 20,000 0

Bachelor 10,000 0��. Amirata Ghorbani, Abubakar Abid, and James Y. Zou. “Interpretation of Neural Networks Is Fragile”.
In: The Thirty-Third AAAI Conference on Arti�cial Intelligence, AAAI ����, The Thirty-First Innovative
Applications of Arti�cial Intelligence Conference, IAAI ����, The Ninth AAAI Symposium on Educational
Advances in Arti�cial Intelligence, EAAI ����, Honolulu, Hawaii, USA, January �� - February �, ����. AAAI
Press, ����, pp. �68�–�688. ���: 10.1609/aaai.v33i01.33013681

��. Dylan Slack et al. “Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods”.
In: AIES ’��: AAAI/ACM Conference on AI, Ethics, and Society, New York, NY, USA, February �-8, ����.
Ed. by Annette N. Markham et al. ACM, ����, pp. �8�–�86. ���: 10.1145/3375627.3375830

Explanation through Examples
��. Jacob Bien and Robert Tibshirani. “Prototype selection for interpretable classi�cation”. In: The Annals

of Applied Statistics (����), pp. ����–���� [maybe this is mandatory reading for this Chapter ?] (-)

��. Pang Wei Koh and Percy Liang. “Understanding black-box predictions via in�uence functions”. In:
arXiv preprint arXiv:����.����� (����)

��. Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. “Examples are not enough, learn to criticize! crit-
icism for interpretability”. In: Advances in neural information processing systems. ���6, pp. ��8�–
��88

��. Chaofan Chen et al. “This looks like that: deep learning for interpretable image recognition”. In: Ad-
vances in neural information processing systems. ����, pp. 8���–8���

�6. Berk Ustun, Alexander Spangher, and Yang Liu. “Actionable recourse in linear classi�cation”. In: Pro-
ceedings of the Conference on Fairness, Accountability, and Transparency. ����, pp. ��–��

��. Arnaud Van Looveren and Janis Klaise. “Interpretable counterfactual explanations guided by proto-
types”. In: arXiv preprint arXiv:����.���8� (����) [extra](-)

�

© Interpretable Machine Learning – 2 / 6



LOCAL, GLOBAL, AND REGIONAL
EXPLANATIONS

Local: Explain model behavior for single instances:

Provide nuanced instance-specific insights

Crucial for complex models where features typically
affect instances differently (due to interactions)

Examples: Counterfactuals, LIME, SHAP, ICE
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LOCAL, GLOBAL, AND REGIONAL
EXPLANATIONS

Local: Explain model behavior for single instances:

Provide nuanced instance-specific insights

Crucial for complex models where features typically
affect instances differently (due to interactions)

Examples: Counterfactuals, LIME, SHAP, ICE

Global: Explain model behavior for entire input space:

Provide high-level insights into model behavior,
often by aggregating local explanations

Easier to communicate but loss of detail &
over-simplification (hides differences)

Examples: PD plots, ALE plots, PFI
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LOCAL, GLOBAL, AND REGIONAL
EXPLANATIONS

Local: Explain model behavior for single instances:

Provide nuanced instance-specific insights

Crucial for complex models where features typically
affect instances differently (due to interactions)

Examples: Counterfactuals, LIME, SHAP, ICE

Global: Explain model behavior for entire input space:

Provide high-level insights into model behavior,
often by aggregating local explanations

Easier to communicate but loss of detail &
over-simplification (hides differences)

Examples: PD plots, ALE plots, PFI

Regional explanations – for subspaces / regions:

Compromise between nuanced & high-level insights

Useful when local explanations group well without
losing much detail
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LOCAL, GLOBAL, REGIONAL EXPLANATIONS

Local (red): ICE curves for one instance
⇝ Detailed but cluttered/obscure pattern

Global (blue): PDP averaged over all days
⇝ Averaged curve hides heterogeneity

Regional: Split data on workingday

Region 1: morning and evening peak
Region 2: late-morning leisure peak

⇝ Preserves detail without overload
⇝ Challenge: find regions automatically
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LOCAL, GLOBAL, REGIONAL EXPLANATIONS

Local (red): ICE curves for one instance
⇝ Detailed but cluttered/obscure pattern

Global (blue): PDP averaged over all days
⇝ Averaged curve hides heterogeneity

Regional: Split data on workingday

Region 1: morning and evening peak
Region 2: late-morning leisure peak

⇝ Preserves detail without overload
⇝ Challenge: find regions automatically

Region 1
(working day)

Region 2
(non-working

day)
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FIXED MODEL VS. REFITS

Global interpretation methods: Input: model + data, output: explanations
⇝ Explanations can be viewed as statistical estimators

Situation in ML: Deployed model is trained on all available data
⇝ No unseen test data left to, e.g., reliably estimate performance
⇝ IML method could use same data model was trained on
⇝ But: Some IML methods require measuring loss on unseen test data

Alternative: Explain the inducer that created the model (not a fixed model)
⇝ Idea: Use resample strategies (e.g. CV) as in performance estimation
⇝ Requires refitting
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LEVELS OF INTERPRETABILITY

Research Question Objects of analysis
1st

level
view

How to explain a given model
fitted on a data set?

(deployed) model
θ 7→ f̂ (θ)

Data

© Interpretable Machine Learning – 6 / 6



LEVELS OF INTERPRETABILITY

Research Question Objects of analysis
1st

level
view

How to explain a given model
fitted on a data set?

(deployed) model
θ 7→ f̂ (θ)

2nd

level
view

How does an optimizer
choose a model based on a

data set?

Model selection process
(e.g., decisions made by
AutoML systems or HPO)

Data
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LEVELS OF INTERPRETABILITY

Research Question Objects of analysis
1st

level
view

How to explain a given model
fitted on a data set?

(deployed) model
θ 7→ f̂ (θ)

2nd

level
view

How does an optimizer
choose a model based on a

data set?

Model selection process
(e.g., decisions made by
AutoML systems or HPO)

3rd

level
view

How do data properties relate
to performance of a learner
and its hyperparameters?

Properties of ML algorithms
in general (benchmark)
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