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CHALLENGE: FAIR ATTRIBUTION OF
IMPORTANCE

Recap:

Data: x1, . . . , x4 uniformly sampled
from [−1, 1]

DGP: y := x1x2 + x3 + ϵY with
ϵY ∼ N(0, 1)

Model: f̂ (x) ≈ x1x2 + x3

Although x3 alone contributes as much to
the prediction as x1 and x2 jointly, all three
are considered equally relevant by PFI.
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0.0 0.2 0.4 0.6
Feature Importance (loss: mae)

Reason: PFI assesses importance given that all remaining features are
preserved. If we first permute x1 and then x2, permutation of x2 would have no
effect on the performance (and vice versa).
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SAGE IDEA “Covert et al.” 2020

SAGE: Use Shapley values to compute a fair attribution of importance (via
model performance)

Idea:

Feature importance attribution can be regarded as cooperative game
⇝ features jointly contribute to achieve a certain model performance

Players: features

Payoff to be fairly distributed: model performance

Surplus contribution of a feature depends on the coalition of features that
are already accessible by the model

Note:

Similar idea (called SFIMP) was proposed in “Casalicchio et al.” 2018

Definition based on model refits was proposed in context of feature
selection in “Cohen et al.” 2007
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https://proceedings.neurips.cc/paper/2020/file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.pdf
https://arxiv.org/abs/1804.06620
https://doi.org/10.1162/neco.2007.19.7.1939


SAGE - VALUE FUNCTION
Removal Idea: To deprive information of the non-coalition features −S from
the model, marginalize the prediction function over feats −S to be “dropped”.

f̂S(xS) = E[̂f (x)|XS = xS]

SAGE value function:

vf̂ (S) = R(̂f∅)−R(f̂S), where R(̂fS) = EY ,XS [L(y , f̂S(xS))]

⇝ Quantify the predictive power of a coalition S in terms of reduction in risk
⇝ Risk of predictor f̂S(xS) is compared to the risk of the mean prediction f̂∅

Surplus contribution of feature xj over coalition xS:

vf̂ (S ∪ {j})− vf̂ (S) = R(̂fS)−R(f̂S∪{j})

⇝ Quantifies the added value of feature j when it is added to coalition S
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SAGE - MARGINAL AND COND. SAMPLING
When computing the marginalized prediction f̂S(xS), the “dropped” features
can be sampled from

the marginal distribution P(x−S) ⇒ marginal SAGE

the conditional distribution P(x−S|xS) ⇒ conditional SAGE

Interpretation marginal sampling: v(S) quantifies the reliance of the model
on features xS

features xS not being causal for the prediction ⇒ v(S) = 0

Interpretation conditional sampling: v(S) quantifies whether variables xS

contain prediction-relevant information (e.g. y ̸⊥⊥ xS) that is (directly or
indirectly) exploited by the model

features xS not being causal for the prediction ̸⇒ v(S) = 0
e.g., if x1 and x2 are perfectly correlated, even if only x1 has a
nonzero coefficient, both are considered equally important

under model optimality, links to mutual information or the conditional
variance exist
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SAGE - MARGINAL AND COND. SAMPLING
Example:

y = x3 + ϵy

x1 = ϵ1

x2 = x1 + ϵ2

x3 = x2 + ϵ3 (all ϵj i.i.d.)

Causal DAG:
x1 → x2 → x3 → y

Fitted LM:
f̂ ≈ 0.95x3 + 0.05x2

conditional v(− j ∪ j) − v(− j)

conditional v(j)

marginal v(− j ∪ j) − v(− j)

marginal v(j)

1 2
importance (sqrt scale)
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Marginal v(j) are only nonzero for features that are used by f̂

Conditional v(j) are also nonzero for features that are not used by f̂ (e.g.,
due to correlation)

For conditional value function v , the difference v(−j ∪ j)− v(−j)
quantifies the unique contribution of xj over remaining features x−j

⇒ Since y ⊥⊥ x1, x2|x3, only v({1, 2, 3})− v({1, 2}) is nonzero (i.e., for
feature j = 3)
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SAGE VALUE FUNCTIONS VS. SAGE VALUES
SAGE value function v(S): measure contribution of a specific feature set
over the empty coalition

SAGE values ϕj : fair attribution of importance

can be computed by averaging the contribution of xj over all feat orderings

for feature permutation τ , the contribution of j in the set Sτ
j is given as

v(Sτ
j ∪ {j})− v(Sτ

j )
Note: Sτ

j is the set of features preceding j in permutation τ

SAGE value approximation: Average over the contributions for M randomly
sampled permutations

ϕj =
1
M

M∑
m=1

v(Sτ
j ∪ {j})− v(Sτ

j )
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INTERACTION EXAMPLE REVISITED
Recap: Data: x1, . . . , x4 uniformly sampled from {−1, 1} and
y := x1x2 + x3 + ϵY with ϵY ∼ N(0, 1). Model: f̂ (x) ≈ x1x2 + x3.

mSAGE

pfi

0.0 0.5 1.0 1.5 2.0
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PFI regards x1, x2 to be equally important as x3

Marginal SAGE fairly divides the contribution of the interaction x1 and x2
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SAGE LOSS FUNCTIONS
When the loss-optimal model f ∗ is inspected using conditional-sampling
based SAGE value functions, interesting links exist.

For cross-entropy loss:

value function is the mutual information: vf∗(S) = I(y ; xS)

surplus contribution of a feature xj is the conditional mutual information:
vf∗(S ∪ {j})− vf∗(S) = I(y , xi |xS)

For MSE loss:

value function is the expected reduction in variance given knowledge of
the features xS : vf∗(S) = Var(y)− E[Var(y |xS)]

surplus contribution is the respective reduction over xS :
vf∗(S ∪ {j})− vf∗(S) = E[Var(y |xS)]− E[Var(y |xS∪j)]
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IMPLICATIONS MARGINAL SAGE VALUES
Can we gain insight into whether the ...

1 feature xj is causal for the prediction?

for all coalitions S, v(j ∪ S)− v(S) can only be nonzero if xj → f̂ (x)
(as for PFI)
⇝ ϕj is only nonzero if xj is causal for the prediction
v(j ∪ S)− v(S) may be zero due to indep. xj ⊥⊥ y |xS (as for PFI)
⇝ ϕj may be zero although the feature is causal for the prediction

2 feature xj contains prediction-relevant information about y?
value functions may be nonzero despite independence due to
extrapolation (as for PFI)
⇝ ϕj may be nonzero without xj being dependent with y
value functions may be zero despite xj containing prediction-relevant
information due to underfitting (as for PFI)
⇝ ϕj may be zero although prediction-relevant information contained

3 model requires access to xj to achieve its prediction performance?
like PFI, in general marginal value functions do not allow insight into
unique contribution⇝ no insight from ϕj
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IMPLICATIONS CONDITIONAL SAGE VALUES
Can we gain insight into whether the ...

1 feature xj is causal for the prediction?
value funcs may be nonzero although feature is not directly used by f̂
⇝ nonzero ϕj does not imply xj → ŷ
value functions may be zero although feature may be used by the
model, e.g. if feature is independent with y and all other features
⇝ zero ϕj does not imply xj ̸→ ŷ

2 feature xj contains prediction-relevant information about y?
e.g. for cross-entropy optimal f̂ , v(j) measures mutual info. I(y ; xj)
⇝ prediction-relevance implies nonzero ϕj

xj ⊥⊥ y does not imply xj ⊥⊥ y |xS and consequently does not imply
v(j ∪ S)− v(S) = 0⇝ ϕj may be nonzero although xj ⊥⊥ y

3 model requires access to xj to achieve its prediction performance?
e.g. for cross-entropy optimal f̂ , surplus contrib. v(j ∪ −j)− v(−j)
captures the conditional mutual information I(y ; xj |x−j)
⇝ ϕj is nonzero for features with unique contribution
xj ⊥⊥ y |x−j does not imply xj ⊥⊥ y |xS (cond. w.r.t. to arbitrary
coalitions S)
⇝ ϕj may be nonzero although feature has no unique contrib.
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value functions may be zero although feature may be used by the
model, e.g. if feature is independent with y and all other features
⇝ zero ϕj does not imply xj ̸→ ŷ
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DEEP DIVE: SHAPLEY AXIOMS FOR SAGE
The Shapley axioms can be translated into properties of SAGE. The
interpretation depends on whether conditional or marginal sampling is used.

Shapley property =⇒ conditional SAGE property
efficiency

∑p
i=1 ϕj(v) = R(̂f∅)−R(f̂ )

symmetry xj = xi =⇒ ϕi = ϕj

linearity ϕj expectation of per-instance
conditional SHAP applied to model loss

monotonicity given models f , f ′, if ∀S :
vf (S ∪ j)− vf (S) ≥ vf ′(S ∪ j)− vf ′(S)
then ϕj(vf ) ≥ ϕj(vf ′)

dummy if ∀S : f̂ (x) ⊥⊥ xj |xS ⇒ ϕj = 0
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The Shapley axioms can be translated into properties of SAGE. The
interpretation depends on whether conditional or marginal sampling is used.

Shapley property =⇒ marginal SAGE property
efficiency

∑p
i=1 ϕj(v) = R(̂f∅)−R(f̂ )

symmetry no intelligible implication
linearity ϕj expecation of per-instance

marginal SHAP applied to model loss
monotonicity given models f , f ′, if ∀S :

vf (S ∪ j)− vf (S) ≥ vf ′(S ∪ j)− vf ′(S)
then ϕj(vf ) ≥ ϕj(vf ′)

dummy model invariant to xj ⇒ ϕj = 0
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