Interpretable Machine Learning

Feature Effects
Marginal Effects

Learning goals

@ Why parameter-based interpretations are
not always possible for parametric models

@ How marginal effects can be used in such
cases

@ Drawbacks of marginal effects
@ Model-agnostic applicability




INTERPRETATION OF SIMPLE MODELS

@ Linear Models:
e Change in x; by Ax; results in change in y by Ay = Ax; - 6;
o Model equation:

y:(90+91X1+"~+9po+6

e Default interpretations correspond to Ax; = 1, i.e., Ay = 0,
e Assumes "ceteris paribus" (all other features held constant)
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INTERPRETATION OF SIMPLE MODELS

@ Linear Models:
e Change in x; by Ax; results in change in y by Ay = Ax; - 6;
o Model equation:

y:90+91x1+"'+9po+€

e Default interpretations correspond to Ax; = 1, i.e., Ay = 0,
e Assumes "ceteris paribus" (all other features held constant)

@ Non-Linear Models with Interactions:

e For models with higher-order or interaction terms, single coefficients
are not sufficient:

y = 00 +01X12 +02X22 +9172X1X2 + €

e Marginal effect of x; varies with different values of x, (and vice versa)
o Interactions depend on the values of other features
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MARG I NAL E FFECTS (M E) > “Bartus” 2005 » “Scholbeck” 2024

@

@ MEs measures prediction changes due to varying one/several features.

@ How to compute it?
@ Derivative MEs (dMEs): numeric deriv. (slope of tangent)
~~ needs differentiability, fails for step-wise models.
Q Forward MEs (fMEs): forward difference f(x + h) — #(x)
~ works for any model, any feature type.

@ Caveat: dMEs can mislead when the prediction surface is non-smooth
(e.g., decision trees); fMEs remain well-defined (due to finite differences).
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MARG I NAL E FFECTS (M E) > “Bartus” 2005 » “Scholbeck” 2024

@

@ MEs measures prediction changes due to varying one/several features.

@ How to compute it?
@ Derivative MEs (dMEs): numeric deriv. (slope of tangent)
~~ needs differentiability, fails for step-wise models.
Q Forward MEs (fMEs): forward difference f(x + h) — #(x)
~ works for any model, any feature type.

@ Caveat: dMEs can mislead when the prediction surface is non-smooth
(e.g., decision trees); fMEs remain well-defined (due to finite differences).

@ Local instantiations (one number per data point)

o ME (at observed point x()): Individual, obs.-specific "what-if" effect.
o MEM (at mean X): Effect at artificial profile ("average obs.").
o MER (at representative value x*): Effect at a user-defined profile.

@ Global summary — Average Marginal Effect (AME):
Expectation of the (d/f)MEs; captures the global overall effect.
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DERIVATIVE VS. FORWARD DIFFERENCE

dME (tangent, green)
@ slope of the tangent at x;
@ delivers a rate of change g—z.
fME (secant, orange)
@ vertical gap between two model evaluations;
@ always exact change in predicted outcome.

@ Non-linearity measure (pink band, bottom):
quantifies deviation of secant and true curve

When the two differ

@ Curvature makes the tangent overshoot or
undershoot = dME may be badly biased.

@ fME is robust to kinks, plateaus, trees, ...
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@ Curvature makes the tangent overshoot or
undershoot = dME may be badly biased.

@ fME is robust to kinks, plateaus, trees, ...

FME

Recommendations
@ Use fME for any non-linear / non-smooth model

@ Use dME for lin. func.-s or analytic convenience
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ME FOR CONTINUOUS FEATURES

@ Derivative Marginal Effect (dAME):

@

A

8?(x) N ?(xh...,x,—i—h,-,...,xp)—f(x1,...,x,-—hj7...,xp)

dMEj(X) =

@ Forward Marginal Effect (fME):

A

ME; (X, ) = F(x1, .., X+ hjy oo, Xp) — F(X)

@ Note: fME is not scale-invariant — halving the step size does not halve
the effect.

@ Additive Recovery: dME and fME isolate terms involving the target feat.

o~

o Example: For f(x) = ax; + bxo: dME;(x) = a, fME;(x, hy) = ah
o Effects from additively linked features (e.g., x2) are canceled.
e Enables focus on direct feature-specific influence in f.
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ME FOR CATEGORICAL FEATURES

@

@ Traditional Approach:
e Choose a baseline category for the categorical feature x;
~ Either the observed value x; or a fixed reference x/°'
o Replace x; with an alternative category x;'*"
e Compute the change in prediction, keeping all other feat. x_; fixed

@ fME Definition for Categorical Features:
IME; (% X[®") = T(x™", ;) — 7(x;, X )

e x;: original category of feature j in obs. x (or reference category xj'ef)
° x/!“ew: new category to evaluate
e x_;: all other features held fixed

@ Advantages:

e Mirrors continuous feature fME: measures discrete change in pred.
e Any level can act as baseline - no fixed reference needed.
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AVERAGE MARGINAL EFFECTS

Definition (based on fMEs with step hgs, can also be based on dMEs):

1 = (2, (i i S
AMEs = — SR + hs, xUg) - F(x))

i=1

Why they work in GLMs:
@ Link function is monotonic = direction of effect stable.
@ Averaging gives sensible results (e.g., logit, probit).
Why they fail on non-parametric models:
@ AMEs assume a consistent effect across the feature space.
@ Non-parametric models can model complex, non-linear relationships.
@ Averaging effects can obscure important heterogeneities.

Takeaway: AMEs can be useful summaries for smooth, monotonic models.
For black-boxes, use local fMEs and support them with non-linearity measure.
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WHY MARGINAL EFFECTS STILL MATTER

@ Single, formal number: One scalar per observation; can be averaged
(AME), reported with Cls, audited, stored easily.

@

@ Multivariate changes Simultaneously perturb multiple continuous/categ.
feat. Still yields a scalar (unlike PD/ICE, which require multivar. plots).

@ Model-faithful, assumption-light Measured at the actual data point.
Captures interactions, no indep. or surrogate-model assumptions (LIME).

@ Non-Linearity Measure: Quantifies how well local linear approximation
holds (e.g., via a normalized squared deviation from the secant).
~ Local reliability measure, something PD/ICE plots cannot quantify.

@ Computationally cheap Just two forward passes (or k—1 for a k-level
factor) per observation vs. grid x n for PD/ICE.

Conclusion:

Plots let you see the landscape; ME give humbers you can use.
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USE-CASE: SCALAR VS. VISUAL ESTIMATION

Setting: A clinical model predicts heart attack risk from patient features, e.g.,
Xq : systolic blood pressure (BP), xo : LDL cholesterol, x5 : age, ...

@

Clinician’s questions
@ "What if this patient’s systolic BP increases by 10 mmHg?"
@ "What if BP increases by 10 mmHg & LDL by 15 mg/dL?"

Route A - ICE/ PD
@ Plot prediction as a function of BP (1-D) or BP+LDL (2-D) on a grid.
@ Manual interpretation of change by looking at curve/surface.
— Visual and local; limited to 1-2 features at a time.

~ ~

Route B — Forward Marginal Effect: {ME = f(x + h) — f(x)
@ 1-D case: h = (10,0,0,...) = risk increases by +3 % points
@ 2-Dcase: h =(10,15,0,...) = risk increases by +4.1 % points
@ One scalar answer per query, extensible to higher dimensions.
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RELATION TO ICE AND PD

@ Individual Conditional Expectation (ICE):

e Visualizes predictions for an obs. across a range of feature values.
e fME corresponds to vertical diff. between points on an ICE curve.

@ Partial Dependence (PD):

e Shows average predictions across a range of feature values.
e AME is equivalent to vertical differences on PD for linear models.

@ Advantages of fMEs:
e Provide exact change in prediction.
e Applicable to high-dimensional feature changes.
e Quantifiable and not limited to visual interpretation.
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