
Interpretable Machine Learning

Theory of Standard fANOVA

Learning goals

Properties of classical fANOVA, reason for its
popularity

Equivalent definition of classical fANOVA

Understand the role constraints play for any
functional decomposition



EXAMPLE: FANOVA ALGORITHM

Remember: Functional decomposition in general not unique

Standard fANOVA only one possible approach

Example:

f̂ (x1, x2) = 4− 2x1 + 0.3ex2 + |x1|x2

= 2.95 + 0.3e.︸ ︷︷ ︸
g∅

+−2x1 + 0.5|x1|+ 0.75︸ ︷︷ ︸
g1(x1)

+ 0.3ex2 + 0.5x2 − 0.3e + 0.05︸ ︷︷ ︸
g2(x2)

+ |x1|x2 − 0.5|x1| − 0.5x2 + 0.25︸ ︷︷ ︸
g1,2(x1,x2)

⇝ seems arbitrarily chosen?
←→ Show: Standard fANOVA fulfills specific desirable properties or
constraints
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CONSTRAINTS FOR STANDARD FANOVA ALGORITHM

Theorem

Features independent =⇒ The components defined by standard fANOVA fulfill the
so-called vanishing conditions:

EXj [gS(xS)] =

∫
gS(xS)dP(xj) = 0 for any j ∈ S and S ⊆ {1, . . . , p}

Implications:
For any component gS , all its PD-functions are 0:

EXV [gS(xS)] =

∫
gS(xS)dP(xV ) = 0 for any V ⫋ S and S ⊆ {1, . . . , p}

⇝ gS contains no lower-order effects, but only pure interaction term
(compare H-statistic)
Components are orthogonal, i.e., mutually independent and uncorrelated:

∀V ̸= S : EX
[
gV (xV )gS(xS)

]
= 0

This implies variance decomposition used to define Sobol indices:
Var[̂f (x)] =

∑
S⊆{1,...,p} Var [gS(xS)]
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EXAMPLES REVISITED
Example: f̂ (x) = 2 + x2

1 − x2
2 + x1 · x2 (e.g., for x1 = 5 and x2 = 10 we have

f̂ (x) = −23)

Computation of components using feature values
x1 = x2 = (−10,−9, . . . , 10)⊤ gives:
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For x1 = 5 and
x2 = 10:

g∅ = 2

g1(x1) =
−9.67

g2(x2) =
−65.33

g1,2(x1, x2) =
50

⇒ f̂ (x) = −23
Vanishing condition means:

g1 and g2 are mean-centered w.r.t. marginal distribution of x1 and x2

Integral of g1,2 over marginal distribution x1 (or x2) is always 0.
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EXAMPLES REVISITED

Example

f̂ (x1, x2) = 4− 2x1 + 0.3ex2 + |x1|x2

= 2.95 + 0.3e.︸ ︷︷ ︸
g∅

+−2x1 + 0.5|x1|+ 0.75︸ ︷︷ ︸
g1(x1)

+ 0.3ex2 + 0.5x2 − 0.3e + 0.05︸ ︷︷ ︸
g2(x2)

+ |x1|x2 − 0.5|x1| − 0.5x2 + 0.25︸ ︷︷ ︸
g1,2(x1,x2)

=⇒ Main effect terms inside g1,2 are chosen exactly such that the one-dimensional
PDPs of g1,2 vanish

=⇒ Same for constant terms inside g1 and g2: Ensure centering

Example
From in-class exercise: g(x1, x2) = β12 (x1 − µ1)(x2 − µ2)
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CONSTRAINTS: EQUIVALENT CHARACTERIZATION

So far: Definition of standard fANOVA implies vanishing conditions

Opposite is true as well:
Features independent =⇒ Any functional decomposition fulfilling the vanishing
conditions must be the standard fANOVA decomposition.

In other words: Vanishing conditions are equivalent characterization

In general: Functional decompositions can be defined by sets of constraints

Many other methods to compute decompositions exist, each with their set of
constraints
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