Interpretable-Machine Learning

Methods & Discussionof CEs

Learning goals
@ See two strategiés to generate CEs

@ Know problems and limitations of CEs




OVERVIEW OF METHODS®

Currently) multiple methods existdo! calculate counterfactuatsy They mainty differ iner in
o, Targets:sMost methods fecus on classification: modelsconlydew coverover regression n
regression modelshods remain in the supervised learning paradigm
~- s0 far, all methods remain in the supervised learning paradigm
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| few on other objectives like fairness or individual preferences
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@ Optimization tool: Gradient- based algonthms (only for differentiable models),

mixed-integer programming (only linear), or gradient-free algorithms e.g.
Nelder-Mead. genetic algorithm
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@ Rashomon Effect: Many methods return a single counterfactual per run, some
multiple counterfactuals, others prioritize CEs or let the user choose
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» Wichteteloal 2098)

Introduced:counterfactual ex planationsinsthe ‘contextab ML predictionsiiyrsalvingving

argmmmaxA(f()()Ty' +XZ —RLMAD; .| /MAD: (1)

o,_,[f[x ).¥') X or [;.x]

X'.X

MADy s themedian-abselite deviation ol feature ., In each iteration: optimizers ke < [ie Nelder-Mead

Nelder-Mead solve the, equationifor x” and then-A dsiinereased until a: suffisiently,| ;1o is found
clo;s,e solution is found | ’ I
nis optimization problem has several shortcomings

This optimization problem has seyeral shortcomings:
° Wedo 89 kngwhpwﬁlgchoose \aprjori s primarily on the minimization of o

° Due u};h? ma;gqmlzanon of A, we facuys; ppmq;tly on the minimization of o,
s only if f(x ) / we focus on mlmml‘zm o,
nition S merica

@ Dehpmon of o, only ooxers numencal feawﬁes ibility of counterfactuals nealected
@ Other ob;ectlves such as sparsnty and plausibility of cdunterfactuals are R

| neglected
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MWW EXPLANATIONS
EXPLANATIONS €

@ Multi-Objective Counterfactual Explanations (MOC): Instead of collapsing object
o Multi-Objective Counterfactual Explanations (MOC):-| nstead of cnllzlpg ng
objectives into a single objective, we could optimize all four objectives
simultaneously arg n [o(f(x").v'). or(X'. x). 0-(X". x). 04(x", X) |

X

I @ Note't arg;mm( U(K‘) )0 X X (XX ) 0adX. x))m re

| o djusted multi-objective genetic algonthm (NSGA-Il) to produce a set of diverse
] ° NO*Q ﬁhat weightmg parameters l&ke -\-are natnecessary. anymwe

] °oUsesanadjusted multi-objective genelic algorithm (NSGMH*&WWMG& rent trade-offs
| ot diverse counterfactuals for-mixed disereterand continueus deature spaces: o

Jll @ Instead of one, MOC returns multiple counterfactuals that represents different

| trade-offs between the objectives and are constructed to be diverse in feature

m space
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EXAMPLE: CREDIT DATA"
eoModelz/SV¥M with RBF kerrehe |
eoxxFirstdataipaint of cfeditdata-with/P{ y '+ goodps= 0.34 ot being aitgoad”’ ood" custc

oCYstomMan crease the probability to [0.5. 1
.qua'\,mcr%lse‘m? prbﬁmlfwﬂlﬂﬁrﬂ} 69 CEs after 200 iterations that met the target

9,MOC (with-default parameters) found 69-CEs after 200.iterations that met the ., 1o reqit amount
target

@ All counterfactuals proposed changes to credit duration and many of them to
credit amount
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AWy Dandl et al.(2020)

eo\We'canvisualizefeature changes withva paraltebplot @nd 2-dim surface plot plof
eoParallélplot revealsithaball counterfactuals had values equaltodrismallenthan than the
the values of x

Scakd faature valwes
5 »,

varnale

I

P X
IPa:larll\el p&of Grey fines show fealure values of CE's
|

x',blug Ime are values of x. Features without
proposed changes are omitted. Bold numbers reler
to range of numeric leatures.
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o St oLHESI g 15 SR 08 B1RTBOUETNIER i rocion ar om x

@ Counterfactuals in the fowen left-comer seemi torbesinariéess favorable: regmm'arr IMs

histograms) 5861,
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X
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vardle draton

el
Para I\el iof Gray lines show feature values of CE's “Surface plot: While aot 2 % blick dots are CEs X'
x blue Ime are values of x. Features without Hiclograms show marginal distribution oHra:nmg ‘
proposed changes are omitted. Bald numbers reler data X.

from x. but they are in high density areas close to training s indicated b
‘ y are n high densit o sargPsncated by
|

to range of numeric features.
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PROBLEMS; PITFALLS; & LIMITATIONS:

eolllusion of-model tinderstandingn CE<S explain ML décisions by paintingtorfews few spe g
spécificalternatives whichoreduces comiplexity, butiis dimite d imlexplanatoryw e
poeweéPsychologists have shown that although perceived model understanding of end

~# Psychotogistschave shown that althoughperce ived model understanding of
end-users increases, the objective model understanding remains unchanged
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@ Right meftricz:Similarity measures arelerucial tofind good CEs {depends on
context/demairgn be desirable for end-users but not for data scientists searching for model bias
o188 ki can be reasonable foylabulardatabut not for image data; o<l transierable to reality
= sparsity can be desirable for.endrusers but not for data scientists searching .. oo/ yyor |
for model bias
@ Confusing Model and Real-World: Model explanations are not easily
transferable to reality
~+ End-users need to be aware that CE provide insights into a model not the
real world

|mmmlssmmmsa&_mmmnss
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~+ End-users need to be aware that CE provide insights into a model not the
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@ Disclosing too much information:
CEs can reveal too much information about the model and help potential

4o ol
dlildCRErS
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PROBLEMS; PITFALLS; & LIMITATIONS:
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~+No perfect solutiono depends on end-users eomputationalresources angt and knowls
knowledge
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OK'M!%%HH\/ vs. fairness: Some authors suggest to focus only on the actionability @
@ Actionability-vs:fairness: Someauthors suggestto focas onlyiorethe: since it is not actic

actionability lof-GEscial biases in the model
| ~+ Counteract contestability. e.g., if ethnicity is not changed in a CE since it is
| not actionable, this could hide racial biases in the model
|
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not-actionable; this could hide racial biases n the,model

o Assumption of canstantmodel :“Teprovideguidance for the future @Es anymore
assume that their underlying model does not change in the future
~= in reality this assumption is often violated and CEs are not reliable anymore
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@ Actionability-vs:fairness: Someauthors suggestto focas onlyiorethe: since it is not actic
actionability lof-GEscial biases in the model
o1 Counleract cantestability; g Jt ethnicity.is not.changed in a CE since i < cocime that thei
not-actionable; this could hide racial biases n the,model
o Assumption of canstantmodel :“Teprovideguidance for the future @Es anymore
oassymethal their undedying medel does not ghange inithe fulure - i mance which generate
~= iR reality.this assumption.is fiten violated and CEs, are not reliable anymore
o AttackingCEs: Researchers/camcreate models withgreatperformance, which
generate arbitrary explanations specified by the ML developer
~~ how faithful are CEs to the models underlying mechanism?
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