SHAP (SHapley Additive-exPlanation) Values:

Learning.goalsng goals
@ Get an intuition: of additive feature attrioutions

@ Understand the concept ofKernel! SHAR HA
@ Ability to interpret SHAR plots HA PP
@ Global SHAP methods”
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SHAPLEY'VALUES IN ML - A'SHORT RECAP~

QuestionzHow muchdoes asfeat: f icontribute torthe predietion of-asinglesobs.le observation
IdeantUses Shapleyvalugs fromocoaperative game theory:=ory
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SHAPLEY'VALUES IN ML - A'SHORT RECAP~

QuestionzHow muchdoes asfeat: jicontribute tathe predietion of-asinglesobs.ole ocbservation
Idea=Use: Shapleyvalugs fromocoaperative game theory=or,
Procedure:: :
eoComparer ‘reduced-prediction functionof feature: coalition S with Sithi {7}
oolterate overpossiblecoalitions te calculatel marginahcontributiontoffeaturej toature 1o samp
sample x

N
Z fsr ¢ ~{;>ﬁ*~rm%*% %

“ren

marginal contfubulon of feawre |
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SHAPLEY'VALUES IN ML - A'SHORT RECAP~

QuestionzHow muchdoes a:feat: jicontribute torthe prediction of-asingleobs.ole obs
Idea=Use: Shapleyvalugs fromocoaperative game theory=or,
Procedure::

eoComparer ‘reduced-prediction functionof feature: coalition S with Sithi {7}

oolterate overpossiblecoalitions te calculatel marginahcontributiontoffeaturej toature 1o samp

sample x
N
Z fS' '{}}ﬁ"M %
Tren
marginal CO’lt’lbulO'\ of feawre |
Remember:
Rengmper, prediction function, p de s the number of feature

o7 is he.prediciion lnction, p denpies,he NUMberof JEaIIES . o1 21 com feature v-
9. Non existent teqt ina ooalmpn gre replaced by prueﬁ 01 raqdom teqt yplugs

S : Players before player j  player j Players after player j
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SHAPLEY'VALUES IN ML - A'SHORT RECAP~

Examplet::
eoTraina random forest-onchike 'sharing idata only using-feat ores humidity(hum)bhum). tem;
temperatare (temp)andwindspeed (ws)
eoCaleulate!Shapleyvalug for'an observation'x with f(x)’ £ 2573
eoMeanpredictiois () # 45151 -
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SHAPLEY'VALUES IN ML - A'SHORT RECAP~

Examplet::

eoTraina random forest-onchike 'sharing idata only using-feat ores humidity(hum)bhum). tem;
temperatare (temp)andwindspeed (ws)

eoCaleulate!Shapleyvalug for'an observation'x with f(x)’ £ 2573
eaMean predictioris () # 45151
Jl Exact S hapley-calcutationfor humidity:it -

~

S | ssufjt o & | Moy| weight | weigl
z hu 14515 | 463515 2/62 2
temp tetemp. humie 308/ | 3060 1/8)6(
ws wws, hum o f 4369 | 4450i5(0 |1 /605
temp, ws |chumtempiws, 12623 |<2576:0 /6 2

2 1 ~ 1 ~ 2
Imum 7 5 (4635 :4515) +5(3060 —3087)+ - (4450~ 4350) s (257875 2623) (234
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FROM'SHAPLEY TO SHAP~

Example/eontinued: Same calculationicantye done fortemperature-and-windspeed: pe o0
00 Pfagp . . = — 165454
Py = .. = =32323

Remember;: Shapley values explam difference between actual and average pred.:

difference between actual and average prediction Actt p lictior 2572.61
I 2‘* 3—4515 *34—1654 323 = —1942 Average prediction: 4515.05
f(x) - B(?) =3@htm + l”remﬁ"""»s
f(x)
Actual prediction: 2572.67 ;
Awerage prediction:| 4515.05
canberewritteretolc .

?(x) L"’dE(?) HOhpm + Qremp + Gws
—~—

o o _
do
un = 5158

o ma
®
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» Lundberg et al. 2017

AimnFind areadditive. combinationi that exptains:the predictiorcof arve bservation x by x by comg

camputing ithe contribution of-each feature toi the predictiom using ‘amoneefficient) n procedul

eslimation procedure.

Definitibriine simplified (binary) coalition feature space Z 0,1 with K rows and p co
eoSimplified {binary)-coalitionfeat. space 2’ < {0: 11" Rwith K rows and/p'colsiexes k-th coalition )
eoRows areveferred toras 215z (o ) (211 with kan{1ihe ioKd(indéxes rioinal feature

[l Exaksthleoalition)
@ Cols are referred to as z; withgig-{1. . . .. q} being the, index of the ariginal feat.

Example: L P ( ( (

Coalition },,., | 2™ | hum temp ws
o~ "y

< temp| %,,, 0 239 o0
hum R z" 1 0 .0

WS "3) z (

temp |z 0 1 .0
o hum ey o Z 70 1
hum, temp®/TP{ '28%) 11271 Yo
temp, ws UM wg® [ of Z'7q T4
hum, ws hum.fef®p. wst1| z''%'o[ 11
hum; temp, ws—z*%* 1 1 1
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» Lundberg et al. 2017

AimnFind areadditive. combinationi that exptains:the predictiorcof arve bservation x by x by comg

oompwtingwme‘conn'muﬁmLoﬁieach‘feamnemMetplmmiomosingh{wmoneefmiem)r procedu

tl n Procedure
e

o _Simplified gbmarxlooaht_pnzieat spacez - {0 1}"*”Mmh K rows andpcq!s

Def'DmQﬂr simplified (binary alition feature space Z 0.1 with s and p coll

o Rows arereferred o as z- [;q §2 {Z,M‘ i va[ J } with K &4 14 - K (In€XES, 100 ety

k-th coalition)

7 Z(')v;xls are r?lfﬁgﬁd toasz withje {1...., p} being the index of the original feat.
——
. .

z**}:Coatition | g(zZ"™) z
Y p =
g (z'["]) = ¢ + Z o,z}'[k]
=1

simplified features
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» Lundberg et al. 2017

AimnFind areadditive. combinationi that exptains:the predictiorcof arve bservation x by x by comg

camputing ithe contribution of-each feature to the predictiom using adimoneefficient) n procecul

eBi tl nProcedure

Defipition; . «implific binary) coalition ture space Z 0,1 with d ¢ )
° Slmp!lbeq (bmarxlooalmqnzteat spaceZ € {0 I}K’(p‘wnh K rows andpcq!s ces k-th coalition)

@ Rows arereferred to as zi[‘ff]! §2 {%M‘ i vzp[ J }With K &4 14 e K InDeXES, 1o feat e
k-th coalition)

7 Cals are referred to ?m_-—_ﬂ\ ., p} being the index of the original feat.
simphfied featuras
z**}:Coatition | g(zZ™) N iz

simplified features

90 NullkQutput. 1))
Average Modet
Baseline (I£(f))
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» Lundberg et al. 2017

AimnFind areadditive. combinationi that exptains:the predictiorcof arve bservation x by x by comg
computing ithe contribution of-each feature toi the predictiom using adimoreefficient) n procedu
e m})agl?.n Procedure. ._
Defipition; . <implified (binar alition feature space Z 0, 1 with s and p col)
®_Simplified gbmarxlooaln_pnzieat spacez € {0 1}"*”\th K rows andpcq!s es k-th coalition)

@ Rows arereferred to as zf[‘fﬁ} §2 {EM‘ i va[ J } with K &4 14 - K (In€XES, 100 ety
k-th coalition)

7 Z(')v;xls are r?lfﬁgﬁd toasz withje {1...., p} being the index of the original feat.
——
. .

2 Coatition | glz'™) z Attribution
simplified features = How much does
;. Attributio feature j change
How much does" € Otput ic
%o: Nu [Qutppt (&) )] feature j changethe"
AverageW output for coaltion k
Baseline (I£(f))
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» Lundberg et al. 2017

AimnFind areadditive. combinationi that exptains:the predictiorcof arve bservation x by x by comg
camputing ithe contribution of-each feature toi the predictiom using ‘adimone-efficient) n procedu
estimation procedure.

Shapley Val-
oy Shapley \/dlﬁe%)

o(z) - oo+zo, “ 5

ture Attribution
Additive Feature Attribution

ll Problem
Prahlem we estimate the Shapley values
How do we estimate the Shapley values ¢;?
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REORERTHRSAP - IN 5 STEPS

Loedimiouratycrnel-based, model-agnostic method to compute Shapley values via local g
D

models (e.g. linear model)

f(x) = g(x) = ¢o + »_oyx

Intuition: If }he oo?lmon includes all features (x" € {1}*), the attributions ¢, and the

nul utpui &, sum up to the original model output f(x)
alitions into feature space & get predictions by applying ML model
Lo% aocuracy oorresPonds to the‘axlom of efficiency in Shapley game theory

ompute wel kernel

il O Fit aweighted linear model
] O Return

alues
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REDRERTHESAP - IN 5 STEPS
Locab Accuracyle coalilions

@ Sample K co L’e\\'\"r‘if'(k)'mjg ipl M +20}

Z

I%

Missingness
! 3 )
I @ For our simple example, We Q& t@yard — 2 8 coalitions (without sampling)

Intution: A missing feature getg anjﬁ,t‘t(ipution of zgro hum  temp  ws

hum

temp

hum, temp
temp. ws
hum, ws

N N N N N N NN

hum, temp, ws
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REORERTHRSAP - IN 5 STEPS
Laeepﬂccﬁmqfer Coalitions into feature space & get predictions by applying ML modg

@ z''" is 1 if features ’z(« biw) HC%‘_FIZQ,)}JAJJ n, 0 if they are absent

r these coalitions; we need to define a function which map

Mlssmghé& feature space I_ﬂJ'uT the original feature s
] == =0
Cnﬂ'sﬂé' istency ‘ z'\! hum temp ws x oAl hum temp ws
[ (z‘[“]) =f(he (2 ]3) and z't“] denote setting 7% =0 "For any two models
and 7 51.6
temp (k) Y] :[x] < F A "k 5.1
: i‘-w )& (& ) e) - (4"’)
WS %
for allinputsz*) € {02117 then ' 0 x {fum-tem 51.6 5.1
temp. ws z 0 1 1 X 5
hum, ws z 1o, (?'.1*) > ¢ (?x) x i 51.6
hum, temp. ws | z'*° 1 1 1 x HTET 51.6 O
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REORERTHRSAP - IN 5 STEPS

Lwﬂccﬁmqfer Coalitions into feature Space & get predictions by applying ML modg

@ Define hy (z where R” maps 1's to feature values of ob:
for features p }ILX) g(& 1 ro"fk ZQJXM ure values of a
for features absent in the k !l coalition (feature values are permuted n
Missingness
@ Predict with ML model ¢ rx}‘f?‘. Qarmepf=10(h, (2
Consistency o ARy T
5 ya aum emp flhy(2V
f(k) (% \ ’2 \
*})T}Ut\r };U)IK) 6211

Intution: If a model cHanges so that the marginal contributioh of a feature value

increasdes or stays t [ the Shapley value also mcreasés or stays the same 3295
Fromt‘c';qnm%tencyt eZSha Iey axioms of additivity, dumrgy and.symmetry follow - u "
temp, ws 1 1 z 1 1 2

hum, ws z ¢
hum, temp. ws z'® ¢ <
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KERNEL SHAP - IN 5 STEPS

Step 3: Compute weights through Kernel

Intuition: We learn most about individual features if we can study their effects in isolation or at
maximal interaction: Small coalitions (few 1's) and large coalitions (i.e. many 1's) get the largest
weights




i KERNEL SHAP - IN 5 STEPS

. Step 3: Compute weights through Kernel

Jll Intuition: We learn most about individual features if we can study their effects in isolation or at
Jll maximal interaction: Small coalitions (few 1's) and large coalitions (i.e. many 1's) get the largest
| weights

C—\_{ p: Number of fea-
tures in x

/.‘”‘['Zfsw') ‘ .‘(P 1)
\ ( P ) 2] (p — [2/0)))

my(2'™): kernel

weight for coalition /
k) P o
Z z''%) |: coalition
size / sum of 1sin
z’l“l




i KERNEL SHAP - IN 5 STEPS

] Step 3: Compute weights through Kernel

Jll Purpose: to include this knowledge in the local surrogate model (linear regression), we calculate
| weights for each coalition which are the observations of the linear regression

N = — {p 1)

e (Z = (1,0,0)) = — =

ws z 0.33
hum, temp z'%) 0.33
temp, ws z''® 0.33
hum, ws z'l7) 0.33
hum, temp, ws | 2%} X

N = T S o I R

—_ D) ek ok O - O
— ek - O - OO

Coalition Z™ | hum temp ws | weight

21 0 0 0 X

hum 2/l 0.33

temp 2" 0.33
_



I KERNEL SHAP - IN 5 STEPS

] Step 3: Compute weights through Kernel

Jll Purpose: to include this knowledge in the local surrogate model (linear regression), we calculate
| weights for each coalition which are the observations of the linear regression

Coalition Z™ | hum temp ws | weight
& z'l") 0 0 0 XC
hum rA N 0 0| 033
temp 2% 0 1 0 | 033
ws ZW | o 0 1| 033
hum, temp 2'®) 1 1 0 0.33
temp, ws 2% 0 1 1 0.33
hum, ws 2'7) 1 0 1 0.33
hum, temp, ws | 2% | 1 1 1 X

~+ weights for empty and full set are infinity and not used as observations for the linear regression

Jll - instead constraints are used such that properties (local accuracy and missingness) are satisfied

nterpretable Machine Learning
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i KERNEL SHAP - IN 5 STEPS

] Step 4: Fit a weighted linear model

. Aim: Estimate a weighted linear model with Shapley values being the coefficients ¢,
) p
g ['z""’ = (o + Z .';A,z;l”
\ -
ll and minimize by WLS using the weights , of step 3
p K p L 12 p .
I L(fg.m)=3[F(h(2%)) - g(2)] m (2%)
k=1

p—1 . . . . .
l with ¢ = E( )and Op = f( ) — >, ©jwereceive ap— 1 dimensional linear regression problem

| nterpretable Machine Learning n

18



i KERNEL SHAP - IN 5 STEPS

]l Step 4: Fit a weighted linear model

. Aim: Estimate a weighted linear model with Shapley values being the coefficients ¢,

b
£ 02" s g(2W) = 4515+ 34- 2 — 1654 - 2"

2 | hum temp ws | weight f
z'?) 1 0 0 0.33 | 4635
z'(3) 0 1 0 0.33 | 3087
z'4 0 0 1 0.33 | 4359
z'(%) 1 1 0 0.33 | 3060
z'(8) 0 1 1 0.33 | 2623
z'\ 1 0 1 0.33 | 4450
N, ! S~
input output

)

323z

)




I KERNEL SHAP -IN 5 STEPS
i Step 5: Return SHAP values

| Intuition: Estimated Kernel SHAP values are equivalent to Shapley values

l g(Z®) = #(h(Z®)) = 45154-34-1—-1654-1—323-1 = E(f) + Onum+ Otemp+ dus = F(X) = 2573
S

| nterpretable Machine Lexrning 12/18



I PROPERTIES

Local Accuracy

Intuition: If the coalition includes all features (x" € {1}*), the attributions ¢; and the null output ¢g
sum up to the original model output f(x)

|
]
. J=1
|

Local accuracy corresponds to the axiom of efficiency in Shapley game theory

| nterpretable Machine Learning -~ 13 /18



I PROPERTIES

Local Accuracy

Missingness

Intution: A missing feature gets an attribution of zero







I PROPERTIES

|l Local Accuracy

_ p

l f(x):g(x'):.,l - Zf/,X}I

_| j=1

| Missingness

| X =0==¢=0

| Consistency

I F(29) -5 (29) 2 % (29) & (2)) = & (F.x) = o,(7.%)
Jll Intution: If a model changes so that the marginal contribution of a feature value increases or stays
|l the same, the Shapley value also increases or stays the same

|l From consistency the Shapley axioms of additivity, dummy and symmetry follow

| nterpretable Machine Learning 1318



I GLOBAL SHAP
[l ldea:

@ Run SHAP for every observation and thereby get a matrix of Shapley values

@ The matrix has one row per data observation and one column per feature

@ We can interpret the model globally by analyzing the Shapley values in this matrix

nterpretable Machine Learning
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I FEATURE IMPORTANCE

]l ldea: Average the absolute Shapley values of each feature over all observations. This corresponds
] to calculating averages column by column in ®

,,1%‘,«“
/| n._, J




I FEATURE IMPORTANCE

] Interpretation:
Jll @ The features temperature and year have by far the highest influence on the model's prediction

similar to PFI
@ However, Shapley Fl is based on the model's predictions only while PFl is based on the
model's performance (loss)

mean{|SHAP value|] average mpact on model owtput magntude)

Jll @ Compared to Shapley values, no effect direction is provided, but instead a feature ranking
_|
i
|
!
_






] SUMMARY PLOT

] Interpretation:
ll @ Lowtemperatures have a negative impact while high temperatures lead to more bike rentals
@ Year: two point clouds for 2011 and 2012 (other categorical features are gray)
@ A high humidity has a huge, negative impact on the bike rental, while low humidity has a rather
minor positive impact on bike rentals

|
|
|
- ———en A
e
N ‘P_—--
_|












| DISCUSSION

i Advantages
@ All the advantages of Shapley values

@ Unify the field of interpretable machine learning in the class of additive feature attribution
methods

@ Has a fast implementation for tree-based models
@ Various global interpretation methods

Disadvantages
@ Disadvantages of Shapley values also apply to SHAP
@ KernelSHAP is slow (TreeSHAP can be used as a faster alternative for tree-based models

— and for an intuitive explanation )

@ KernelSHAP ignores feature dependence
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