Interpretable Machine Learning

SHAP (SHapley Additive exPlanation) Values

Learning goals goals

- Get an intuition of additive feature attributions ttributions
- Understand the concept of Kernel SHAP nel SHAP
- Ability to interpret SHAP plots HAP plots
- Global SHAP methods methods

Question: How much does a feat: #lcontribute to the prediction of a single observation.

Idea: Use Shapley values from cooperative game theoryeory

Question: How much does a feate il contribute to the prediction of a single observation.

Idea: Use: Shapley values from cooperative game theoryeory

Procedure:::

- ullet Compare "reduced-prediction function" of feature coalition S with $S \uplus \{\mathcal{G}\} \cup \{j\}$
- Iterate overpossible coalitions to calculate marginal contribution of feature j to sample sample x

$$\phi_{j} = \frac{1}{\rho!} \sum_{\tau \in \Pi} \underbrace{\hat{f}_{S_{j}^{\tau} \cup \{j\}}}_{f_{S_{j}^{\tau} \cup \{j\}}} \underbrace{(\mathbf{x}_{S_{j}^{\tau} \cup \{j\}}) - \hat{f}_{S_{j}^{\tau}}(\mathbf{x}_{S_{j}^{\tau}})}_{\text{marginal contribution of feature } j} - \hat{f}_{S_{j}^{\tau} \cup \{j\}} \underbrace{(\mathbf{x}_{S_{j}^{\tau} \cup \{j\}}) - \hat{f}_{S_{j}^{\tau}}(\mathbf{x}_{S_{j}^{\tau}})}_{\text{marginal contribution of feature } j}$$

Question: How much does a feate plantribute to the prediction of a single observation

Idea: Use: Shapley values from cooperative game theoryeory

Procedure:::

- ullet Compare "reduced prediction function" of feature coalition S with $S \uplus \{ j \} \cup \{ j \}$
- Iterate overpossible coalitions to calculate marginal contribution of feature j to sample sample x

$$\phi_{j} = \frac{1}{\rho!} \sum_{\tau \in \Pi} \underbrace{\hat{f}_{S_{j}^{\tau} \cup \{j\}}}_{f_{S_{j}^{\tau} \cup \{j\}}} \underbrace{\hat{f}_{S_{j}^{\tau} \cup \{j\}}}_{f_{S_{j}^{\tau} \cup \{j\}}} \underbrace{\hat{f}_{S_{j}^{\tau} \cup \{j\}}}_{f_{S_{j}^{\tau} \cup \{j\}}} \underbrace{\hat{f}_{S_{j}^{\tau} \cup \{j\}}}_{marginal contribution of feature j} \underbrace{\hat{f}_{S_{j}^{\tau} \cup \{j\}}}_{marginal contribution of feature j}$$

Remember:

Remember in e prediction function, p denotes the number of features

- is the prediction function, p denotes the number of features of random feature values
- Non-existent feat, in a coalition are replaced by values of random feat, values or $\tau = (\tau^{(1)}, \dots, \tau^{(p)})$
- Recall S_{T}^{r} defines the coalition as the set of players before player f in order $\tau = (\tau^{(1)}, \dots, \tau^{(p)})$ $\tau^{(|S|)}$ $\tau^{(|S|+1)}$ $\tau^{(|S|+2)}$ $\tau^{(p)}$ $\tau^{(p)}$ $\tau^{(p)}$

 S_i^T : Players before player j

player j

Players after player j

Interpretable Machine Learning - 1 / 18

Example:::

- Train a random forest on bike sharing idata only using features humidity (him), hum), temperature temperature (temp) and windspeed (ws)
- Calculate Shapley value for an observation with f(x) (x) 2573
- Mean prediction is E(Î) 451515

Example:::

- Trainia random forest on bike sharing idata only using features humidity (hium), hum), temperature temperature (temp) and windspeed (ws)
- CalculatetShapley value for an observation x with f(x) (x) 2573
- Mean prediction is E(Î) → 451515

Exact Shapley calculation for humidity: ty:

S	<i>SS</i> ∪{	j}	$\cup \hat{t}_{s}$				eight	wei	ght
Ø	ø hum	1	h 45 15				2/6/35	2/	6
temp	tetemp, h	umten	3087 _m	3	060)8	7	1/36)60	1)	6
ws	wws, hu	ım w	4359	4	45035	9	1/6150	1)	6
temp, ws	ehum, tem	p, ws.,	t 2623 v	_{/S} 2	5 <u>73</u> 52	3	2/6	2	6

$$\phi_{\text{hum}} = \frac{2}{6} (463\frac{2}{6} (24515) + \frac{1}{6} (3060 - \frac{1}{3}087) + \frac{1}{6} (4450 - \frac{1}{435}9) + \frac{2}{6} (2573 - \frac{2623}{6}) + \frac{2}{6} (2573 - \frac{262$$

IFROM SHAPLEY TO SHAP

Example continued. Same calculation can be done for temperature and windspeed: peed:

- $\bullet \circ \phi_{\text{femon}} = \dots = -165454$
- $\bullet \circ \phi_{wsv} = = ... = -32323$

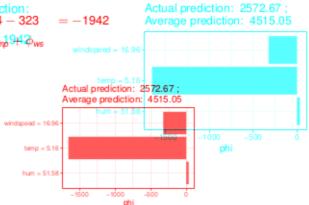
difference between actual and average prediction:
$$2573 - 4515 = 34 - 1654 - 323 = -1942$$

$$-4515 = \hat{f}(\mathbf{x}) - \mathbb{E}(\hat{b}) = 3\hat{\phi}_{hum} + \phi_{temp} = 94\hat{\phi}_{ws}$$

$$\hat{f}(\mathbf{x}) - \mathbb{E}(\hat{f}) = \phi_{hum} + \phi_{temp} + \phi_{ws}$$

can be rewritten to o

$$\hat{\textit{f}}(\mathbf{x}) \not\models \underbrace{\mathbf{E}(\hat{\textit{f}})}_{\phi_0} \underbrace{\mathbf{E}(\hat{\textit{f}})}_{\phi_0} \underbrace{\mathbf{E}(\hat{\textit{f}})}_{\phi_0} + \phi_{\textit{temp}} + \phi_{\textit{ws}} + \phi_{\textit{ws}}$$



SHAP DEFINITION Lundberg et al. 2017)

Afrim Find an additive combination that explains the prediction of an observation x by x by computing the computing the computing the contribution of each feature to the prediction using fac (more efficient) in procedure, estimation procedure.

Definitionine simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p columns

- Simplified (binary) coalition feat space Z' ∈ {0; i'} K i with K rows and p colstexes k-th coalition)
- ullet Rows are referred to ras $\mathbf{z}'^{(k)} \simeq \{\mathbf{z}_{p}'^{(k)}\}$, $\in \{\mathbf{z}_{p}'^{(k)}\}$ with $k \in \{1, 0, 0, 0\}$ (indexes riginal feature

Exak-th|coalition)

Cols are referred to as z_j with info(1,...,p) being the index of the original feat.

Example:

	Ø			z ′(1)	0	0	0
Coalition	hum	$\mathbf{z}'^{(k)}$	hu	n 🛫 (te m	p ws	0	0
Ø	temp	z ′(1)	0	- /(3) 0	0 0	1	0
hum	ws	z ′ ⁽²⁾	- 1	_ ₍₄₎ 0	0		4
temp		z ′ ⁽³⁾	0	1(5)1	70	9	,
ws	hum,	(E)X(4)	0	Z (0)	1	1	U
hum, ten	n <mark>t</mark> emp,	V28 (5)	- 1	Z'(0)	00	1	- 1
temp, ws	hum,	<mark>₩<mark>2</mark>(6)</mark>	0	Z ′ ⁽⁷⁾ 1	11	0	- 1
hum, ws			WS1	z'(8)0	11	1	- 1
hum, ten		z ′(8)	1	1	1		

Interpretable Machine Learning - 4 / 18

AimmFind an additive combination that explains the prediction of an observation x by x by computing the computing the contribution of each feature to the prediction using a (more efficient) n procedural estimation procedure.

Definitionine simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p colon is

- Simplified (binary) coalition feat. space $\mathbf{Z}' \in \{0,1\}_{k=1}^{K \times p}$ with K rows and P colspans k-th coalition)
- Rows are referred to as $\mathbf{z}'^{(k)}$ as $\mathbf{z}'^{(k)}$ with $k \in \mathbb{N}_{2}$ the in K (indexes riginal feature k-th coalition)
- Cols are referred to as \mathbf{z}_j with $j \in \{1, \dots, p\}$ being the index of the original feat.

Cols are referred to as
$$\mathbf{z}_j$$
 with $j \in \{1, \dots, p\}$ being the index of the simplified features $\mathbf{z}^{\prime(k)}$: Coalition simplified features
$$g\left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{j=1}^p \phi_j z_j^{\prime(k)}$$
 $g\left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{j=1}^p \phi_j z_j^{\prime(k)}$

$$\begin{pmatrix} \mathbf{z}'^{(k)} \end{pmatrix} = \phi_0 + \sum_{j=1}^{p} \phi_j \mathbf{z}_j'^{(k)}$$
$$\phi_0 + \sum_{j=1}^{p} \phi_j \mathbf{z}_j'^{(k)}$$

AimmFind an additive combination that explains the prediction of an observation x by x by computing the computing the contribution of each feature to the prediction using a (more efficient) n procedural estimation procedure.

Definitionine simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p column

- Simplified (binary) coalition feat. space $\mathbf{Z}' \in \{0,1\}_{k=1}^{K \times p}$ with K rows and P colsumption coalition)
- Rows are referred to as $\mathbf{z}'^{(k)}$ as $\mathbf{z}'^{(k)}$ with $\mathbf{k} \in \{\mathbf{z}'^{(k)}\}$ k-th coalition)
- Cols are referred to as \mathbf{z}_j with $j \in \{1, \dots, p\}$ being the index of the original feat.

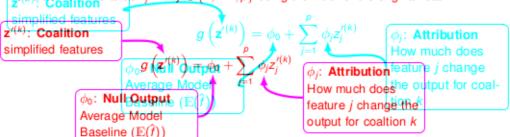
simplified features
$$\mathbf{z}^{\prime(k)} \colon \mathbf{Coalition}$$
 simplified features
$$\mathbf{z}^{\prime(k)} \colon \mathbf{Coalition}$$
 simplified features
$$\phi_0 g \left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{j=1}^p \phi_j z_j^{\prime(k)}$$
 Average Model
$$\phi_0 \colon \mathbf{Null} \ \mathbf{Qutput} \ (\mathbb{E}(\hat{t}))$$
 Average Model Baseline ($\mathbb{E}(\hat{t})$)

Interpretable Machine Learning - 4 / 18

Afrim Find an additive combination that explains the prediction of an observation x by x by computing the computing the contribution of each feature to the prediction using a (more efficient) n procedure.

Definitionine simplified (binary) coalition feature space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and p column

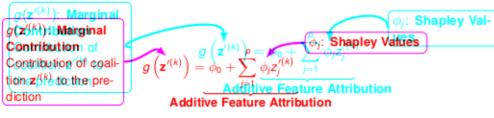
- Simplified (binary) coalition feat. space $\mathbf{Z}' \in \{0,1\}^{K \times p}$ with K rows and P collidexes k-th coalition)
- Rows are referred to as $\mathbf{z}_0'^{(k)} = \{\mathbf{z}_p'^{(k)}\}$ with $k \in \{1\}$ with $k \in \{1\}$ the in $k \in \{1\}$ with $k \in \{1\}$ and $\{1\}$ indexes riginal feature k-th coalition)
- Cols are referred to as \mathbf{z}_j with $j \in \{1, ..., p\}$ being the index of the original feat.



Interpretable Machine Learning - 4 / 18

SHAP DEFINITION Lundberg et al. 2017

AimmFind an additive combination that explains the prediction of an observation x by x by computing the computing the contribution of each feature to the prediction using a (more efficient) n procedural estimation procedure.



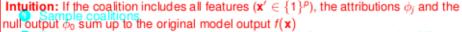
Problem

Problem we estimate the Shapley values ϕ_i ? How do we estimate the Shapley values ϕ_i ?

PROPERTIESAP - IN 5 STEPS

Local Accuracy ernel-based, model-agnostic method to compute Shapley values via local surrogate

models (e.g. linear model)
$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^{p} \phi_j x_j'$$



Transfer coalitions into feature space & get predictions by applying ML model Local accuracy corresponds to the axiom of efficiency in Shapley game theory Compute weights through kernel

- Fit a weighted linear model
- Return Shapley values

PROPERTIES AP - IN 5 STEPS

Local Accuracyle coalitions

• Sample K coalitions $f(\mathbf{x}) = g(\mathbf{x})$ be simplified for $g(\mathbf{x}) = g(\mathbf{x})$ by $g(\mathbf{x}) = g(\mathbf{x})$

$$\mathbf{z}^{\prime(k)} \in \{0, \overline{1}\}^{p}, \quad k \in \{1, \dots, K\}$$

Missingness

• For our simple example, $\sqrt[4]{e}$ fra $\sqrt[4]{e}$ trip $\sqrt[4]{e}$ $\sqrt[4]{e}$

z '(1) z '(2)	0	0	0
_/(2)			U
Z \-/	1	0	0
z ′ ⁽³⁾	0	1	0
z '(4)	0	0	1
z '(5)	1	1	0
z ′(6)	0	1	1
z ′(7)	1	0	- 1
), ws z '(8)	1	1	1
	z'(3) z'(4) z'(5) z'(6) z'(7)	z'(3) 0 z'(4) 0 z'(5) 1 z'(6) 0 z'(7) 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

PROPERTIESAP - IN 5 STEPS

Lôcat Accuracy er Coalitions into feature space & get predictions by applying ML model

- $\mathbf{z}^{\prime(k)}$ is 1 if features are part of the k-th \mathbf{z}^{ρ} coalition, 0 if they are absent
- To calculate predictions for these coalitions we need to define a function which maps the binary feature space back to the original feature space

 Missingness

$\mathbf{x}_j' = 0 \Longrightarrow \phi_j = 0$									
Consistency	$\mathbf{z}^{\prime(k)}$	hum	temp	ws		x coalition	hum	temp	ws
	^{k)}))¹an	$d \mathbf{z}_{I}^{(k)}$	denôte s	etting z_i^{\prime}	k) = 0	. For any two m	odels \hat{f}	Ø	Ø
and 7, if	z '(2)	1′	0	0 1		x ^{hum}	51.6	Ø	Ø
temp 🧌	$(\mathbf{z}^{\prime(k)})$	_ \frac{1}{2}'	$\left(\mathbf{z}_{-j}^{\prime(k)}\right) \geq$	$\hat{f}_{x}(\mathbf{z}'(k))$	$-\hat{t}_{x}$	(Z)(R)Y)	Ø	5.1	Ø
WS	4 1 1	U	(-) 0 -	1	, ^	X · ·	Ø	Ø	17.0
for all inputs $\mathbf{z}'^{(k)} \in \mathcal{C}$	$\{0,1\}^p$,	then	1	0		X ^{hum,temp}	51.6	5.1	Ø
temp, ws	z ′ ⁽⁶⁾	0	<u>,</u> 1,	1		x ^{temp, ws}	Ø	5.1	17.0
hum, ws	z ′ ⁽⁷⁾	1 φ	$(\hat{t}', \hat{\mathbf{x}})$	$\geq \phi_j(\hat{t}, \mathbf{x})$		x ^{hum,ws}	51.6	Ø	17.0
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1		X ^{hum,temp,ws}	51.6	5.1	17.0

IPROPERTIESAP - IN 5 STEPS

Locat Accuracy er Coalitions into feature space & get predictions by applying ML model

• Define $h_x(\mathbf{z}'^{(k)}) = \mathbf{z}^{(k)}$ where $h_x: \{0,1\}_{p} \to \mathbb{R}^p$ maps 1's to feature values of observation \mathbf{z} for features part of the k-th coalition (feature values are permuted multiple)

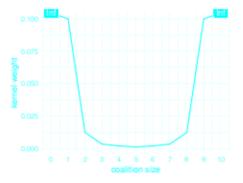
Missingness

• Predict with ML model on $\sqrt[K]{h}$ $\otimes a \text{ task} = \sqrt[K]{\hat{f}} = \sqrt[K]{(h_x(\mathbf{z}'^{(k)}))}$

Consistency				$h_x(\mathbf{z}'^{(i)})$	k))			•	
Coalition	$Z_{J(k)}^{\prime(k)}$	hum	$\mathbf{z}^{(k)} = \hat{t}_x$	<u>₩</u> \$_/(k) \	Z(k)	hum	temp	ws	$\hat{f}\left(h_{x}\left(\mathbf{z}^{\prime\left(k\right)}\right)\right)$
$g I_x (\mathbf{z}^{(1)}) - I_x$	(Z (1),)	$\leq Q_X$ (2 () - 1 _x	(z=j) =	$\Rightarrow \varphi_{\underline{\ell}}(0)$,	$X = \varphi_1$	(I, \mathbf{x})		6211
Intution: If a model	change	s so tha	t the marg	inal contri	bution of	a featur	e value		5586
increases or stays th	e same	, th <mark>e</mark> Sh	apley valu	e also inc	reases or	stays th	ne <mark>sa</mark> me		3295
WS	z'(4)	0	0	1	z ⁽⁴⁾			17.0	5762
From consistency to	ne Snap	ney axi	oms of ad	aitivity, a	ummy an	a ₅ symr	netry 10	llow	2616
temp, ws	z ′ ⁽⁶⁾	0	1	1	z ⁽⁶⁾		5.1	17.0	2900
hum, ws	z ′ ⁽⁷⁾	1	0	1	z ⁽⁷⁾	51.6		17.0	5411
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	z ⁽⁸⁾	51.6	5.1	17.0	2573

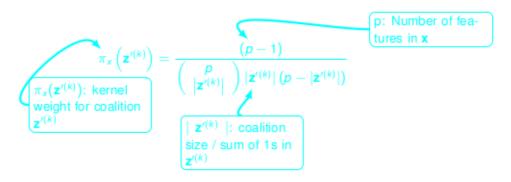
Step 3: Compute weights through Kernel

Intuition: We learn most about individual features if we can study their effects in isolation or at maximal interaction: Small coalitions (few 1's) and large coalitions (i.e. many 1's) get the largest weights



Step 3: Compute weights through Kernel • see shapley_kernel_proof.pdf

Intuition: We learn most about individual features if we can study their effects in isolation or at maximal interaction: Small coalitions (few 1's) and large coalitions (i.e. many 1's) get the largest weights



Step 3: Compute weights through Kernel

Purpose: to include this knowledge in the local surrogate model (linear regression), we calculate weights for each coalition which are the observations of the linear regression

$$\pi_{x}(\mathbf{z}') = \frac{(p-1)}{\binom{p}{|\mathbf{z}'|}|\mathbf{z}'|(p-|\mathbf{z}'|)} \leadsto \pi_{x}(\mathbf{z}' = (1,0,0)) = \frac{(3-1)}{\binom{3}{1}|1(3-1)} = \frac{1}{3}$$

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	weight
Ø	z ′(1)	0	0	0	∞
hum	z ′ ⁽²⁾	1	0	0	0.33
temp	z ′ ⁽³⁾	0	1	0	0.33
WS	$z'^{(4)}$	0	0	1	0.33
hum, temp	z ′ ⁽⁵⁾	1	1	0	0.33
temp, ws	z ′(6)	0	1	1	0.33
hum, ws	z ′ ⁽⁷⁾	1	0	1	0.33
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	∞

Step 3: Compute weights through Kernel

Purpose: to include this knowledge in the local surrogate model (linear regression), we calculate weights for each coalition which are the observations of the linear regression

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	weight
Ø	z ′(1)	0	0	0	∞
hum	z ′ ⁽²⁾	1	0	0	0.33
temp	z ′ ⁽³⁾	0	1	0	0.33
WS	$z'^{(4)}$	0	0	1	0.33
hum, temp	z ′ ⁽⁵⁾	1	1	0	0.33
temp, ws	z ′ ⁽⁶⁾	0	1	1	0.33
hum, ws	z ′ ⁽⁷⁾	1	0	1	0.33
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	∞

weights for empty and full set are infinity and not used as observations for the linear regression

 $[\]leadsto$ instead constraints are used such that properties (local accuracy and missingness) are satisfied

Step 4: Fit a weighted linear model

Aim: Estimate a weighted linear model with Shapley values being the coefficients ϕ_i

$$g\left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{i=1}^{p} \phi_i z_j^{\prime(k)}$$

and minimize by WLS using the weights π_x of step 3

$$L\left(\hat{f}, g, \pi_{x}\right) = \sum_{k=1}^{K} \left[\hat{f}\left(h_{x}\left(\mathbf{z}^{\prime(k)}\right)\right) - g\left(\mathbf{z}^{\prime(k)}\right)\right]^{2} \pi_{x}\left(\mathbf{z}^{\prime(k)}\right)$$

with $\phi_0=\mathbb{E}(\hat{t})$ and $\phi_p=\hat{t}(x)-\sum_{j=0}^{p-1}\phi_j$ we receive a p-1 dimensional linear regression problem

Step 4: Fit a weighted linear model

Aim: Estimate a weighted linear model with Shapley values being the coefficients ϕ_i

$$g\left(\mathbf{z}^{\prime(k)}\right) = \phi_0 + \sum_{i=1}^{p} \phi_i z_i^{\prime(k)} \leadsto g\left(\mathbf{z}^{\prime(k)}\right) = 4515 + 34 \cdot z_1^{\prime(k)} - 1654 \cdot z_2^{\prime(k)} - 323 \cdot z_3^{\prime(k)}$$

$\mathbf{z}'^{(k)}$	hum	temp	ws	weight	Î		
$z'^{(2)}$	1	0	0	0.33	4635		
$z'^{(3)}$	0	1	0	0.33	3087		
$z'^{(4)}$	0	0	1	0.33	4359		
$z'^{(5)}$	1	1	0	0.33	3060		
$z'^{(6)}$	0	1	1	0.33	2623		
$z'^{(7)}$	1	0	1	0.33	4450		
inp ut							

Step 5: Return SHAP values

Intuition: Estimated Kernel SHAP values are equivalent to Shapley values

$$g(\mathbf{z}^{\prime(8)}) = \hat{f}(h_{\mathbf{x}}(\mathbf{z}^{\prime(8)})) = 4515 + 34 \cdot 1 - 1654 \cdot 1 - 323 \cdot 1 = \underbrace{\mathbb{E}(\hat{f})}_{\phi_0} + \phi_{hum} + \phi_{temp} + \phi_{ws} = \hat{f}(\mathbf{x}) = 2573$$

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^{p} \phi_j x_j'$$

Intuition: If the coalition includes all features $(\mathbf{x}' \in \{1\}^p)$, the attributions ϕ_j and the null output ϕ_0 sum up to the original model output $f(\mathbf{x})$

Local accuracy corresponds to the **axiom of efficiency** in Shapley game theory

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^p \phi_j x_j'$$

Missingness

$$x'_j = 0 \Longrightarrow \phi_j = 0$$

Intution: A missing feature gets an attribution of zero

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^p \phi_j x_j'$$

Missingness

$$x'_j = 0 \Longrightarrow \phi_j = 0$$

Consistency
$$\hat{f}_x\left(\mathbf{z}'^{(k)}\right) = \hat{f}\left(h_x\left(\mathbf{z}'^{(k)}\right)\right)$$
 and $\mathbf{z}'^{(k)}_{-j}$ denote setting $z'^{(k)}_j = 0$. For any two models \hat{f} and \hat{f}' , if

$$\hat{f}_{x}'\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}'\left(\mathbf{z}_{-j}^{\prime(k)}\right) \geq \hat{f}_{x}\left(\mathbf{z}^{\prime(k)}\right) - \hat{f}_{x}\left(\mathbf{z}_{-j}^{\prime(k)}\right)$$

for all inputs $\mathbf{z}^{\prime(k)} \in \{0,1\}^p$, then

$$\phi_j\left(\hat{t}',\mathbf{x}\right) \geq \phi_j(\hat{t},\mathbf{x})$$

Local Accuracy

$$f(\mathbf{x}) = g(\mathbf{x}') = \phi_0 + \sum_{j=1}^{\rho} \phi_j x_j'$$

Missingness

$$x_j' = 0 \Longrightarrow \phi_j = 0$$

Consistency

$$\hat{\mathit{f}}_{\mathit{x}}'\left(\mathbf{z}'^{(k)}\right) - \hat{\mathit{f}}_{\mathit{x}}'\left(\mathbf{z}_{-j}'^{(k)}\right) \geq \hat{\mathit{f}}_{\mathit{x}}\left(\mathbf{z}'^{(k)}\right) - \hat{\mathit{f}}_{\mathit{x}}\left(\mathbf{z}_{-j}'^{(k)}\right) \Longrightarrow \phi_{j}\left(\hat{\mathit{t}}',\mathbf{x}\right) \geq \phi_{j}(\hat{\mathit{t}},\mathbf{x})$$

Intution: If a model changes so that the marginal contribution of a feature value increases or stays
 the same, the Shapley value also increases or stays the same

From consistency the Shapley axioms of additivity, dummy and symmetry follow

GLOBAL SHAP • Lundberg et al. 2018

Idea:

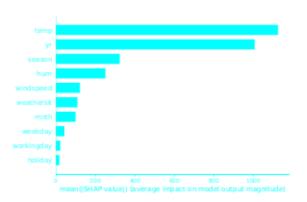
- Run SHAP for every observation and thereby get a matrix of Shapley values
- The matrix has one row per data observation and one column per feature
- . We can interpret the model globally by analyzing the Shapley values in this matrix

$$\Phi = \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} & \dots & \phi_{1p} \\ \phi_{21} & \phi_{22} & \phi_{23} & \dots & \phi_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_{n1} & \phi_{n2} & \phi_{n3} & \dots & \phi_{np} \end{bmatrix}$$

FEATURE IMPORTANCE

Idea: Average the absolute Shapley values of each feature over all observations. This corresponds to calculating averages column by column in Φ

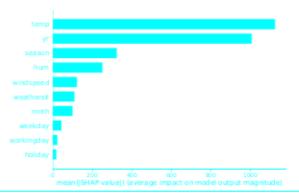
$$I_j = \frac{1}{n} \sum_{i=1}^n \left| \phi_j^{(i)} \right|$$



FEATURE IMPORTANCE

Interpretation:

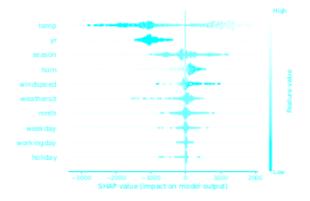
- The features temperature and year have by far the highest influence on the model's prediction
- Compared to Shapley values, no effect direction is provided, but instead a feature ranking similar to PFI
- However, Shapley FI is based on the model's predictions only while PFI is based on the model's performance (loss)



SUMMARY PLOT

Combines feature importance with feature effects

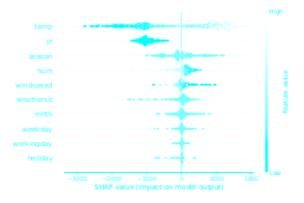
- Each point is a Shapley value for a feature and an observation
- The color represents the value of the feature from low to high
- Overlapping points are jittered in y-axis direction



SUMMARY PLOT

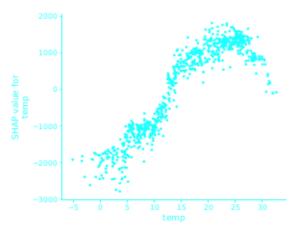
Interpretation:

- Low temperatures have a negative impact while high temperatures lead to more bike rentals
- Year: two point clouds for 2011 and 2012 (other categorical features are gray)
- A high humidity has a huge, negative impact on the bike rental, while low humidity has a rather minor positive impact on bike rentals



DEPENDENCE PLOT

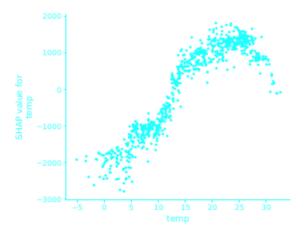
- · Visualize the marginal contribution of a feature similar to the PDP
- Plot a point with the feature value on the x-axis and the corresponding Shapley value on the y-axis



DEPENDENCE PLOT

Interpretation:

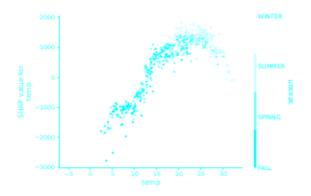
- Increasing temperatures induce increasing bike rentals until 25°C
- If it gets too hot, the bike rentals decrease



DEPENDENCE PLOT

Interpretation:

- We can colour the observations by a second feature to detect interactions
- Visibly the temperatures interaction with the season is very strong



DISCUSSION

Advantages

- All the advantages of Shapley values
- Unify the field of interpretable machine learning in the class of additive feature attribution methods
- Has a fast implementation for tree-based models
- Various global interpretation methods

Disadvantages

- Disadvantages of Shapley values also apply to SHAP
- KernelSHAP is slow (TreeSHAP can be used as a faster alternative for tree-based models
 Lundberg et al 2018 and for an intuitive explanation
- KernelSHAP ignores feature dependence