# Interpretable Machine Learning

# Partial Dependence (PD) plot





## PARTIAL DEPENDENCE (PD) Friedman (2001)

**Definition:** PD functioning expectation of  $\hat{f}(\mathbf{x}_S, \mathbf{x}_{-S})$  w.r.t. marginal distribution of features  $\hat{f}(\mathbf{x}_S, \mathbf{x}_{-S})$  w.r.t. marginal distribution of

features  $\mathbf{x}_{-S}$ :

$$f_{S,PD}(\mathbf{x}_S) = \mathbb{E}_{\mathbf{x}_{-S}} \left( \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}) \right) = \int_{-\infty}^{\frac{1}{1-\infty}} f(\mathbf{x}_S, \mathbf{x}_{-S}) d\mathbf{x}_S$$

$$f_{S,PD}(\mathbf{x}_S) = \mathbb{E}_{\mathbf{x}_{-S}} \left( \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}) \right)$$
**Estimation:** For a grid value  $\mathbf{x}_S$ , average ICE curves point-wise 
$$= \int_{-\infty}^{\infty} \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}) \, d\mathbb{P}(\mathbf{x}_{-S})$$

**Estimation:** For a grid value  $\mathbf{x}_{S}^{*}$ , average ICE curves point-wise at  $\mathbf{x}_{S}^{*}$  over all observed  $\mathbf{x}_{-S}^{(i)}$ :

$$\hat{f}_{S,PD}(\mathbf{x}_S^*) = \frac{1}{n} \sum_{i=1}^n \hat{f}(\mathbf{x}_S^*, \mathbf{x}_{-S}^{(i)})$$
$$= \frac{1}{n} \sum_{i=1}^n \hat{f}_{S,ICE}^{(i)}(\mathbf{x}_S^*)$$



### PARTIAL DEPENDENCE PENDENCE FOR LINEAR MODEL

Assume a linear regression model with two features:

$$\hat{f}(\mathbf{x}) = \hat{f}(\mathbf{x}_1, \mathbf{x}_2) = \hat{\theta}_1 \mathbf{x}_1 + \hat{\theta}_2 \mathbf{x}_2 + \hat{\theta}_0$$
and  $S = \{1\}$  with  $S = \{2\}$  is



Estimate PD function by **point-wise** average of ICE curves at grid value

$$\mathbf{x}_{S}^{*}=x_{1}^{*}=1$$

 $\Rightarrow$  PD plot visualizes the function  $f_1 = \frac{1}{2} \left( \frac{x_0}{x_1} \right) + \frac{1}{2} \left( \frac{\hat{x}_1}{x_1} \right) \frac{1}{x_1} \left( \frac{\hat{x}_1}{$ 





Estimate PD function by  $\hat{\mathbf{h}}_{CPD}(\mathbf{x}_{1}^{*})$  se  $\frac{1}{2}\sqrt{\sum_{i=1}^{n}}\hat{g}(\mathbf{x}_{1}^{*})\mathbf{x}_{2,3}^{(i)}$  urves at grid value  $\mathbf{x}_{S}^{*}=x_{1}^{*}=1$ :

$$\hat{t}_{1,PD}(x_1^*) = \frac{1}{n} \sum_{i=1}^n \hat{t}(x_1^*, \mathbf{x}_{2,3}^{(i)})$$



Estimate PD function by  $\hat{h}_{O} = \frac{1}{2} \sqrt{\sum_{i=1}^{n} \hat{g}(x_{i}^{i}) x_{2,3}^{(i)}}$  urves at grid value  $x_{S}^{*} = x_{1}^{*} = 2$ :

$$\hat{t}_{1,PD}(x_1^*) = \frac{1}{n} \sum_{i=1}^n \hat{t}(x_1^*, \mathbf{x}_{2,3}^{(i)})$$

### EXAMPLE: PD FOR LINEAR MODEL

Assume a linear regression model with two features:

PD function for feature of interest  $S = \{1\}$  (with  $-S = \{2\}$ ) is:



⇒ PD plot visualizes the function  $f_{1,PD}(\mathbf{x}_1) = \hat{\theta}_1 \mathbf{x}_1 + const$  ( $\hat{=}$  feature effect of  $\mathbf{x}_1$ ). Estimate PD function by **point-wise** average of ICE curves at grid value  $\mathbf{x}_2^* = x_1^* = 3$ :

$$\hat{t}_{1,PD}(x_1^*) = \frac{1}{n} \sum_{i=1}^n \hat{t}(x_1^*, \mathbf{x}_{2,3}^{(i)})$$

### INTERPRETATION: PD AND ICE

#### If feature varieses:

ICEEHow does prediction of individual observation change? ⇒ local ocal interpretation
 interpretation best average effect / expected prediction change? ⇒ global interpretation

 $\bullet \ \ \textbf{PD:} \ \ \textbf{How does average effect/expected prediction } \ change? \Rightarrow \textbf{global}$ 



### INTERPRETATION: PD AND ICE

#### If feature varieses:

ICEEHow does prediction of individual observation change? ⇒ local ocal interpretation
 interpretation best average effect / expected prediction change? ⇒ global interpretation

 $\bullet \ \ \textbf{PD:} \ \ \text{How does average effect/expected prediction change?} \Rightarrow \textbf{global} \\$ 





- PDP with boxplots and ICE with parallel coordinates plots
- NB: Categories can be unordered, if so, rather compare pairwise
- PDP with boxplots and ICE with parallel coordinates plots
- NB: Categories can be unordered, if so, rather compare pairwise

### COMMENTS ON EXTRAPOLATION

Extrapolation can cause issues in regions with few observations or if features are correlated





- Example: Features x<sub>1</sub> and x<sub>2</sub> are strongly correlated
- Black points: Observed points of the original data
- Grid points used to calculate the ICE and PD curves (several unrealistic values)
  - $\Rightarrow$  PD plot at  $x_1 = 0$  averages predictions over the whole marginal distribution of feature  $x_2$
  - ⇒ May be problematic if model behaves strange outside training distribution

### COMMENTS ON INTERACTIONS

- PD plots: averaging of ICE curves might obfuscate heterogeneous effects and interactions
  - $\Rightarrow$  Ideally plot ICE curves and PD plots together to uncover this fact
  - ⇒ Different shapes of ICE curves suggest interaction (but does not tell with which feature)



### **COMMENTS ON INTERACTIONS - 2D PARTIAL DEPENDENCE**



- Humidity and temperature interact with each other at high values (see shape difference)
   Shape of ICE curves at different horizontal and vertical slices varies (for high values)
- Low to medium humidity and high temperature ⇒ many rented bikes

### CENTERED ICE PLOT (C-ICE)

- **Issue:** Difficult to identify heterogenous ICE curves if curves have different intercepts (are stacked)
- **Solution:** Center ICE curves at fixed reference value  $x' \sim \mathbb{P}(\mathbf{x}_S)$ , often  $x' = \min(\mathbf{x}_S)$
- ⇒ Easier to identify heterogenous shapes with c-ICE curves

$$\hat{t}_{S, \text{clCE}}^{(i)}(\mathbf{x}_S) = \hat{t}(\mathbf{x}_S, \mathbf{x}_{-S}^{(i)}) - \hat{t}(x', \mathbf{x}_{-S}^{(i)}) \\
= \hat{t}_S^{(i)}(\mathbf{x}_S) - \hat{t}_S^{(i)}(x')$$

 $\Rightarrow$  Visualize  $\hat{\mathit{f}}_{S,clCE}^{(i)}(\mathbf{x}_{S}^{*})$  vs. grid point  $\mathbf{x}_{S}^{*}$ 

### CENTERED ICE PLOT (C-ICE)

**Issue:** Difficult to identify heterogenous ICE curves if curves have different intercepts (are stacked) **Solution:** Center ICE curves at fixed reference value  $x' \sim \mathbb{P}(\mathbf{x}_S)$ , often  $x' = \min(\mathbf{x}_S)$ 

⇒ Easier to identify heterogenous shapes with c-ICE curves

$$\begin{aligned} \hat{f}_{S,clCE}^{(i)}(\mathbf{x}_S) &= \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}^{(i)}) - \hat{f}(x', \mathbf{x}_{-S}^{(i)}) \\ &= \hat{f}_S^{(i)}(\mathbf{x}_S) - \hat{f}_S^{(i)}(x') \end{aligned}$$

 $\Rightarrow$  Visualize  $\hat{\mathit{f}}_{S,clCE}^{(i)}(\mathbf{x}_{S}^{*})$  vs. grid point  $\mathbf{x}_{S}^{*}$ 

Interpretation (yellow curve in c-ICE): On average, the number of bike rentals at  $\sim 97~\%$  humidity decreased by 1000 bikes compared to a humidity of 0 %



## CENTERED ICE PLOT (C-ICE)

For categorical features, c-ICE plots can be interpreted as in LMs due to reference value



### Interpretation:

- The reference category is x' = SPRING
- Golden crosses: Average number of bike rentals if we jump from SPRING to any other season ⇒ Number of bike rentals drops by ~ 560 in WINTER and is slightly higher in SUMMER and FALL compared to SPRING