Interpretable-Machine Learning

Partial Dependence:(PD) piot

Learning goals
® PD plots and relation to ICE plots
@ |nterpretation of PDP
@ Extrapolation and Interactions in PDPs
@ Centered ICE and PDP




PARTIAL DEPENDENCE (PD) e

Definitions PD functionis expectation of
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PARTIAL BEPENDENCE-PENDENCE FOR LINEAR MODEL

‘Z“ me a linear regression model with two features
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Estlmate PD function by point-wise average of ICE curves atgan—
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PD plot visualizes the f#.’;é(ﬁ) fi 1; :1:“ f()'(‘i.}s(g)a)‘j:':gf feature effect of x;)
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PARTIAL DEPENDENCE-
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EXAMPLEPD FORLINEAR MODEL

Assume a linear regression model with two features:
f| X | X, | X f
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PD functionlfor feature of interest S = {1} (with —S = {2}) is:
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= PD plot visualizes the function f; pp(x;) = d,%, + const (— feature eﬁect of xy).
Estimate PD function by point-wise average of ICE curves at alue Xq X
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INTERPRETATION: PDANDICE

If feature varies:
00lCEEHow does-predictionof individual observation change? s+ local
interpretation

@ PD: How does average effect/ expected prediction change? = global
interpretation
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INTERPRETATION: PDANDICE

If featune varies:
00lCEEHow does-predictionof individual observation change? s+ local

interpretation

@ PD: How does average effect/ expected prediction change? = global

interpretation

Insights from bike sharing data:

e Parallel ICE curves =
homogeneous effect

@ Warmer + more rented bikes

@ Too hot = slightly less bikes
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PD plotior agalegercal featre.o| fcalure  ICE potlor a categprisshlegtwe oo lcorical fealure
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o PDP with boxplots and ICE with parallel coordinates plots

@ NB: Categories can be unordered, if so, rather compare pairwise
@ PDP with boxplots and ICE with parallel coordinates plots
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@ NB: Categories can be unordered. if so. rather compare pairwise
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i COMMENTS ON EXTRAPOLATION

Jll Extrapolation can cause issues in regions with few observations or if features are correlated
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@ Example: Features x; and x> are strongly correlated
@ Black points: Observed points of the original data

Grid points used to calculate the ICE and PD curves (several unrealistic values)
= PD plot at x;, = 0 averages predictions over the whole marginal distribution of feature x,
=» May be problematic if model behaves strange outside training distribution
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i COMMENTS ON INTERACTIONS
ll @ PD plots: averaging of ICE curves might obfuscate heterogeneous effects and interactions
] => |deally plot ICE curves and PD plots together to uncover this fact

] = Different shapes of ICE curves suggest interaction (but does not tell with which feature)
I
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i COMMENTS ON INTERACTIONS - 2D PARTIAL DEPENDENCE

2-dimPDP ICE for temp ICE for humidity
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@ Humidity and temperature interact with each other at high values (see shape difference)
~+ Shape of ICE curves at different horizontal and vertical slices varies (for high values)
@ Low to medium humidity and high temperature = many rented bikes
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CENTERED ICE PLOT (C-ICE)

Issue: Difficult to identify heterogenous ICE curves if curves have different intercepts (are stacked)
Solution: Center ICE curves at fixed reference value x’ ~ P(xg), often x" = min(xs)
= Easier to identify heterogenous shapes with c-ICE curves

xs,x"s) — F(x', x"s)

(xs) — 5’ (x)
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l = Visualize fy .,0e(X5) vs. grid point X
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Fluce(xs) = Fxs,x"s) — F(x',xUs)

= 15(xs) ~ ()
= Visualize ?‘,';':.'C,CE(X’S) vs. grid point xg

Interpretation (yellow curve in c-ICE):

On average, the number of bike rentals
at ~ 97 % humidity decreased by 1000
bikes compared to a humidity of 0 %

CENTERED ICE PLOT (C-ICE)
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Issue: Difficult to identify heterogenous ICE curves if curves have different intercepts (are stacked)
Solution: Center ICE curves at fixed reference value x" ~ P(xg), often x" = min(xs)
=> Easier to identify heterogenous shapes with c-ICE curves

c-ICE plot at ¥ = minfum)
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] CENTERED ICE PLOT (C-ICE)

| For categorical features, c-ICE plots can be interpreted as in LMs due to reference value

Predcted bke rertals
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Interpretation:
@ The reference category is x" = SPRING

@ Golden crosses: Average number of bike rentals
if we jump from SPRING to any other season
=» Number of bike rentals drops by ~ 560 in
WINTER and is slightly higher in SUMMER and
FALL compared to SPRING

nterpretable Machine Lexning - 10/10



