
MOTIVATION

The graphical way of representing simple functions/models, like
logistic regression. Why is that useful?

Because individual neurons can be used as building blocks of
more complicated functions.

Networks of neurons can represent extremely complex hypothesis
spaces.

Most importantly, it allows us to define the “right” kinds of
hypothesis spaces to learn functions that are more common in our
universe in a data-efficient way (see Lin, Tegmark et al. 2016).

© Introduction to Machine Learning – 1 / 9



REPRESENTATION LEARNING

It is very critical to feed a classifier the “right” features in order for it
to perform well.

Before deep learning took off, features for tasks like machine
vision and speech recognition were “hand-designed” by domain
experts. This step of the machine learning pipeline is called
feature engineering.

DL automates feature engineering. This is called representation
learning.

© Introduction to Machine Learning – 2 / 9



SINGLE HIDDEN LAYER NETWORKS

Single neurons perform a 2-step computation:
1 Affine Transformation: a weighted sum of inputs plus bias.
2 Activation: a non-linear transformation on the weighted sum.

Single hidden layer networks consist of two layers (without input
layer):

1 Hidden Layer: having a set of neurons.
2 Output Layer: having one or more output neurons.

Multiple inputs are simultaneously fed to the network.

Each neuron in the hidden layer performs a 2-step computation.

The final output of the network is then calculated by another 2-step
computation performed by the neuron in the output layer.

© Introduction to Machine Learning – 3 / 9



SINGLE HIDDEN LAYER NETWORKS: EXAMPLE

Each neuron in the hidden layer performs an affine transformation on
the inputs:

z(1)
in = w11x(1) + w21x(2) + w31x(3) + b1

z(1)
in = 3 ∗ (−3) + (−9) ∗ 1 + 2 ∗ 5 + 5 = −3

© Introduction to Machine Learning – 4 / 9



SINGLE HIDDEN LAYER NETWORKS: EXAMPLE

Each neuron in the hidden layer performs an affine transformation on
the inputs:

z(2)
in = w12x(1) + w22x(2) + w32x(3) + b2

z(2)
in = 11 ∗ (−3) + (−2) ∗ 1 + 7 ∗ 5 + 2 = 2

© Introduction to Machine Learning – 4 / 9



SINGLE HIDDEN LAYER NETWORKS: EXAMPLE

Each neuron in the hidden layer performs an affine transformation on
the inputs:

z(3)
in = w13x(1) + w23x(2) + w33x(3) + b3

z(3)
in = (−6) ∗ (−3) + 3 ∗ 1 + (−4) ∗ 5 − 1 = 0

© Introduction to Machine Learning – 4 / 9



SINGLE HIDDEN LAYER NETWORKS: EXAMPLE

Each neuron in the hidden layer performs an affine transformation on
the inputs:

z(4)
in = w14x(1) + w24x(2) + w34x(3) + b4

z(4)
in = 6 ∗ (−3) + (−1) ∗ 1 + 5 ∗ 5 + 1 = 7

© Introduction to Machine Learning – 4 / 9



SINGLE HIDDEN LAYER NETWORKS: EXAMPLE

Each neuron in the hidden layer performs an affine transformation on
the inputs:

© Introduction to Machine Learning – 4 / 9



SINGLE HIDDEN LAYER NETWORKS: EXAMPLE

Each hidden neuron performs a non-linear activation transformation on
the weight sum:

z(i)
out = σ

(
z(i)

in

)
= 1

1+ez
(i)
in

© Introduction to Machine Learning – 5 / 9



SINGLE HIDDEN LAYER NETWORKS: EXAMPLE

The output neuron performs an affine transformation on its inputs:

fin = u1z(1)
out + u2z(2)

out + u3z(3)
out + u4z(4)

out + c

© Introduction to Machine Learning – 6 / 9



SINGLE HIDDEN LAYER NETWORKS: EXAMPLE

The output neuron performs an affine transformation on its inputs:

fin = u1z(1)
out + u2z(2)

out + u3z(3)
out + u4z(4)

out + c
fin = 3 ∗ 0.05 + (−12) ∗ 0.88 + 8 ∗ 0.50 + 1 ∗ 0.99 + 6 = 0.57

© Introduction to Machine Learning – 6 / 9



SINGLE HIDDEN LAYER NETWORKS: EXAMPLE

The output neuron performs a non-linear activation transformation on
the weight sum:

fout = σ(fin) = 1
1+efin

fout =
1

1+e0.57 = 0.64

© Introduction to Machine Learning – 7 / 9



HIDDEN LAYER: ACTIVATION FUNCTION

If the hidden layer does not have a non-linear activation, the
network can only learn linear decision boundaries.

A lot of different activation functions exist.

© Introduction to Machine Learning – 8 / 9



HIDDEN LAYER: ACTIVATION FUNCTION

ReLU Activation:

Currently the most popular choice is the ReLU (rectified linear
unit):

σ(v) = max(0, v)

© Introduction to Machine Learning – 9 / 9


