
Introduction to Machine Learning

ML-Basics
Models & Parameters

Learning goals
Understand that an ML model is
simply a parametrized curve

Understand that the hypothesis
space lists all admissible models for a
learner

Understand the relationship between
the hypothesis space and the
parameter space



WHAT IS A MODEL?

A model (or hypothesis)

f : X → Rg

is a function that maps feature vectors to predicted target values.

In conventional regression: g = 1; for classification g is the
number of classes, and output vectors are scores or class
probabilities (details later).
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WHAT IS A MODEL? / 2

f is meant to capture intrinsic patterns of the data, the underlying
assumption being that these hold true for all data drawn from Pxy .

It is easily conceivable how models can range from super simple
(e.g., linear, tree stumps) to very complex (e.g., deep neural
networks) and there are infinitely many choices how we can
construct such functions.

In fact, ML requires constraining f to a certain type of functions.
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HYPOTHESIS SPACES

Without restrictions on the functional family, the task of finding a
“good” model among all the available ones is impossible to solve.

This means: we have to determine the class of our model a priori,
thereby narrowing down our options considerably. We could call
that a structural prior.

The set of functions defining a specific model class is called a
hypothesis space H:

H = {f : f belongs to a certain functional family}
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PARAMETRIZATION

All models within one hypothesis space share a common
functional structure. We usually construct the space as
parametrized family of curves.

We collect all parameters in a parameter vector
θ = (θ1, θ2, . . . , θd) from parameter space Θ.

They are our means of fixing a specific function from the family.
Once set, our model is fully determined.

Therefore, we can re-write H as:

H = {fθ : fθ belongs to a certain functional family

parameterized by θ}
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PARAMETRIZATION / 2

This means: finding the optimal model is perfectly equivalent to
finding the optimal set of parameter values.

The relation between optimization over f ∈ H and optimization
over θ ∈ Θ allows us to operationalize our search for the best
model via the search for the optimal value on a d-dimensional
parameter surface.

θ might be scalar or comprise thousands of parameters,
depending on the complexity of our model.
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PARAMETRIZATION / 3

Short remark: In fact, some parameter vectors, for some model
classes, might encode the same function. So the
parameter-to-model mapping could be non-injective.

We call this then a non-identifiable model.

But this shall not concern us here.
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EXAMPLE: UNIVARIATE LINEAR FUNCTIONS

H = {f : f (x) = θ0 + θ1x ,θ ∈ R2}
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EXAMPLE: BIVARIATE QUADRATIC FUNCTIONS

H = {f : f (x) = θ0 + θ1x1 + θ2x2 + θ3x2
1 + θ4x2

2 + θ5x1x2,θ ∈ R6},

f (x) = 3 + 2x1 + 4x2

x

f (x) = 3 + 2x1 + 4x2+

+ 1x2
1 + 1x2

2

f (x) = 3 + 2x1 + 4x2+

+ 1x2
1 + 1x2

2 + 4x1x2
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EXAMPLE: RBF NETWORK

Radial basis function networks with Gaussian basis functions

H =

{
f : f (x) =

k∑
i=1

aiρ(∥x − ci∥)
}
,

where

ai is the weight of the i-th neuron,

ci its center vector, and

ρ(∥x − ci∥) = exp(−β∥x − ci∥2) is
the i-th radial basis function with
bandwidth β ∈ R.

Usually, the number of centers k and the
bandwidth β need to be set in advance (so-
called hyperparameters).
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EXAMPLE: RBF NETWORK / 2
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