HYPERPARAMETER OPTIMIZATION

Hyperparameters (HP) λ are parameters that are *inputs* to learner \mathcal{I} which performs ERM on training data set to find optimal **model** parameters θ . HPs can influence the generalization performance in a non-trivial and subtle way.

Hyperparameter optimization (HPO) / Tuning is the process of finding a well-performing hyperparameter configuration (HPC) $\lambda \in \tilde{\Lambda}$ for an learner $\mathcal{I}_{\lambda}.\mathcal{I}_{\lambda}$.

OBJECTIVE AND SEARCH SPACE

Search space $\tilde{\Lambda} \subset \Lambda$ with all optimized HPs and ranges:

$$\tilde{\Lambda} = \tilde{\Lambda}_1 \times \tilde{\Lambda}_2 \times \cdots \times \tilde{\Lambda}_{\mu}$$

where $\tilde{\Lambda}_{ii}$ is a bounded subset of the domain of the i-th HP Λ_{ii} and can be either continuous, discrete, or categorical.

The general HPO problem is defined as:

$$\lambda^* \in \arg\min_{\lambda \in \tilde{\Lambda}} c(\lambda) = \arg\min_{\lambda \in \tilde{\Lambda}} \widehat{GE}(\mathcal{I}, \mathcal{J}, \rho, \lambda)$$

with λ^* as theoretical optimum, and $c(\lambda)$ is short for estim. gen. error when \mathcal{I} , resampling splits \mathcal{J} , performance measure ρ are fixed.

OBJECTIVE AND SEARCH SPACE

$$\begin{array}{l} \pmb{\lambda}^* \in \arg\min_{\pmb{\lambda} \in \tilde{\Lambda}} c(\pmb{\lambda}) = \arg\min_{\pmb{\lambda} \in \tilde{\Lambda}} \widehat{\mathrm{GE}}(\mathcal{I}, \mathcal{J}, \rho, \pmb{\lambda}) \end{array}$$

• We can define tuner as function
$$\tau: (\mathcal{D}, \mathcal{I}, \tilde{\Lambda}, \mathcal{J}, \rho) \mapsto \hat{\lambda}$$

