HPO - MANY APPROACHES

@ Evolutionary algorithms
@ Bayesian/ model-based optimization
@ Multi-fidelity optimization, e.g. Hyperband

HPO methods can be characterized by:
@ how the exploration vs. exploitation trade-off is handled
@ how the inference vs. search trade-off is handled

Further aspects: Parallelizability, local vs. global behavior, handling of
noisy observations, multifidelity and search space complexity.
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EVOLUTIONARY STRATEGIES
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@ Are aclass of stochastic population-based optimization methods inspired by the
concepts of biological evolution

@ Are applicable to HPO since they do not require gradients
@ Mutation is the (randomized) change of one or a few HP values in a configuration.

® Crossover creates a new HPC by (randomly) mixing the values of two other
configurations.
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BAYESIAN OPTIMIZATION

BO sequentially iterates:

O
@ Approximate A () x O
by (nonlin) regression — Sumgate
model ¢(A), from
evaluated configurations
(archive)

© Propose candidates via x,/ ~~~~~~~~~~~~~~~
optimizing an acquisition
function that is based on ,\
the surrogate ¢(\)

© Evaluate candidate(s)

proposed in 2, then goto 1
Important trade-off: Exploration (evaluate candidates in

under-explored areas) vs. exploitation (search near promising areas)
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BAYESIAN OPTIMIZATION

Surrogate Model:

@ Probabilistic modeling of
C(A) ~ (&(A), d(N)) with
posterior mean ¢(A) and
uncertainty ().

@ Typical choices for numeric
spaces are Gaussian
Processes; random forests
for mixed spaces ,\

Acquisition Function:
@ Balance exploration (high &) vs. exploitation (low ¢).
@ Lower confidence bound (LCB): a(A) = &(A) — « - ()
e Expected improvement (El):  a(A) = E[max {¢nin — C(A),0}]
where (¢, is best cost value from archive)
@ Optimizing a(A) is still difficult, but cheap(er)
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BAYESIAN OPTIMIZATION
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Upper plot: The surrogate model (black, solid) models the unknown relationship
between input and output (black, dashed) based on the initial design (red points).
Lower plot: Mean and variance of the surogate model are used to derive the expected
improvement (El) criterion. The point that maximizes the El is proposed (green point).
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BAYESIAN OPTIMIZATION
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Upper plot: The surrogate model (black, solid) models the unknown relationship
between input and output (black, dashed) based on the initial design (red points).
Lower plot: Mean and variance of the surogate model are used to derive the expected
improvement (El) criterion. The point that maximizes the El is proposed (green point).
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BAYESIAN OPTIMIZATION
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Upper plot: The surrogate model (black, solid) models the unknown relationship
between input and output (black, dashed) based on the initial design (red points).

Lower plot: Mean and variance of the surogate model are used to derive the expected
improvement (El) criterion. The point that maximizes the El is proposed (green point).
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BAYESIAN OPTIMIZATION
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Upper plot: The surrogate model (black, solid) models the unknown relationship
between input and output (black, dashed) based on the initial design (red points).
Lower plot: Mean and variance of the surogate model are used to derive the expected
improvement (El) criterion. The point that maximizes the El is proposed (green point).
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BAYESIAN OPTIMIZATION /2

Since we use the sequentially updated surrogate model predictions of
performance to propose new configurations, we are guided to
“interesting"” regions of A and avoid irrelevant evaluations:
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Figure: Tuning complexity and minimal node size for splits for CART on the titanic
data (10-fold CV maximizing accuracy).
Left panel: BO, 50 configurations: right panel: mndom search, 50 iterations.

Top panel: one run (initial design of BO is white): bottom panel: mean =+ std of 10 runs.
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BAYESIAN OPTIMIZATION /3
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MULTIFIDELITY OPTIMIZATION

@ Prerequiste: Fidelity HP Ay, i.e., a component of A, which
o Hinfluences the complilationalccost of the fitting procedure in a
o |dmonatonically.increasing manner |
@ Methods of multifidelity optimization in HPO are all tuning
o Trapproaches that.can efficiently handle a Z with a HP Ay
@ The:lower we setl b e imare points we ¢an explore in our
sisearchespace; albeit with muchsless reliable information w.r.t./their
“Atue performantey HP
o e_We assume toknow box-eonstraints of Ay, 50 Agg € [AL", AP,
|where:the uppenrlimit implies:the highest fidelity returning values
(.closest to-the true objective value at the highest computationél
o *CRSL until budget depleted ot

single HPC remains
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I SUCCESSIVE HALVINGZATION — HYPERBAND

] Problem with SH
@ Races down setlof HPGs:tothebest: |y
o Ideal Discard badeonfigurations
Solugarly Hyperband

@ Train:HPCs with fraction of full L dgets

budget (SGD epochs| training set
» Size); the control param for this is
call?d multl-ﬂdellty HP 2 the
o Contlnue wnth better 1/ 71 f}actlon of
HPCs (w.r.t G h),wnth 1 times budget
(usually p = 2, 3)
@ Repeat until budget depleted or
single HPC remains

same budadt

A

.....
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I MULTIFIDELITY OPTIMIZATION - HYPERBAND

] ProblemwithSH (echniques besides model-based oferizatan and I
"o Giood HP Cs 'cotilabe killed off too early, bracket 3
depends:on évaluationscheduleimulated annealing ¢ Al pll
Solutien: Hyperband s / CIAES ‘1’ l %
@ ‘RepearSH with different start budgets /\1[,?,] 2 16 5
anginitial number of HPCs pl°! 3 64 1
L} Each SH run IS called bracket , bracket 2
re inforn S ‘ a2 # A}dpp
® Each bracket consumes ca the same budget Biscl \0 4 27
16 6
| 2 64 1
I bra<[:’ll<et 1 "
[
| 0 16 10
| 1 64 2
bracket 0
I t Al gl
_ 0 64 5
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