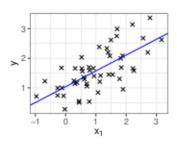
LINEAR REGRESSION

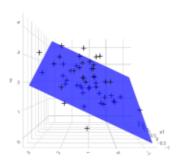
• Idea: predict $y \in \mathbb{R}$ as **linear** combination of features¹:

$$\hat{\mathbf{y}} = f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} = \theta_0 + \theta_1 x_1 + \dots + \theta_p x_p$$

---- find loss-optimal params to describe relation y x

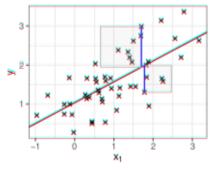
ullet Hypothesis space: $\mathcal{H} = \{ f(\mathbf{x}) = oldsymbol{ heta}^{ op} \mathbf{x} \mid oldsymbol{ heta} \in \mathbb{R}^{p+1} \}$

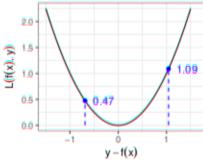




LOSS PLOTS

We will often visualize loss effects like this:





- Data as y ~ x₁
- Prediction hypersurface
 here: line
- Residuals r = y = f(x)
 ⇒ squares to illustrate loss

- Loss as function of residuals

 ⇒ strength of penalty?

 ⇒ symmetric?
- Highlighted: loss for residuals shown on LHS

STATISTICAL PROPERTIES

- LM with L2 loss intimately related to classical stats LM
- Assumptions
 - $\mathbf{x}^{(i)}$ iid for $i \in \{1, ..., n\}$
 - Homoskedastic (equivariant) Gaussian errors

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon}, \ \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

 $\rightsquigarrow y_{\ell}$ conditionally independent & normal: $y_{\ell}|X \sim \mathcal{N}(X\theta, \sigma^2 I)$

- Uncorrelated features
 - virtual multicollinearity destabilizes effect estimation
- If assumptions hold: statistical inference applicable
 - Hypothesis tests on significance of effects, incl. p-values
 - Confidence & prediction intervals via student-t distribution
 - ullet Goodness-of-fit measure $R^2 = 1 \mathrm{SSE} \ / \underbrace{\mathrm{SST}}_{\sum\limits_{i=1}^{n} (y^{(i)} \bar{y})^2}$

→ SSE = part of data variance not explained by model

