PERMUTATION FEATURE IMPORTANCE

RFs improve accuracy by aggregating multiple decision trees but **lose interpretability** compared to a single tree. **Feature importance** mitigates this problem.

- How much does performance decrease, if feature is removed / rendered useless?
- We permute values of considered feature
- Removes association between feature and target, keeps marginal distribution
- Can obtain GE of RF (without and with permuted features) by predicting OOB data, to efficiently compute FI during training
- Avoids not only new models (if feature would be removed) but can already use "OOB test data" during training

ID	Color	Form	Origin	ength	Banana
1	yellow	round	domestic	10	no
2	brown	oblong	imported	11	yes
3	green	oblong	imported	19	yes
4	yellow	oblong	domestic	/4	yes

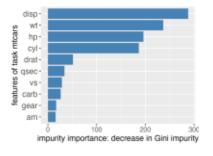
PERMUTATION IMPORTANCE

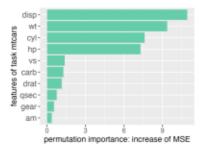
Tree 1	ID	-	Longth	Banana	ń(x)	Tree 1	ID	-	Length	Banana	f00
	1		10	no	- 1		1	-	11	80	- /
73	2		п	yes	yes	. 7	2	-	19	yes	ne
/ 🦳	3	-	19	yes	- 1		3	-	144	yes	- /
_	4		14	yes	I	permutation of	4	-	10	yes	
feature Length											
	10		Longth	Benene	fi(x)		ID	-	Length	Denene	fi(x)
Tree M	1		10	ma	- /	Tree M	1	-	71	70	- /
	2		п	yes	I		2	-	19	yes	- /
	8	-	19	yes	yes		8	-	14	yes	yes
	- 4		16	yes	yes		4		10	yes	no

- 1: Calculate $\widehat{\mathrm{GE}}_{\mathsf{OOB}}$ using set-based metric ho
- 2: for features x_j , $j = 1 \rightarrow p$ do
- for Some statistical repetitions do
- Distort feature-target relation: permute x_i with ψ_i
- 5: Compute all n OOB-predictions for permuted feature data, obtain all $\hat{t}_{\cos \theta_0}^{(i)}$
- Arrange predictions in F_{OOB,ψj}; Compute GE_{OOB,j} = ρ(**y**, F_{COB,ψ)})
- Estimate importance of j-th feature: Fl_j = GE_{OOB,j} − GE_{OOB}
- 8: end for
- Average obtained Fl_i values over reps
- 10: end for

IN PRACTICE / OUTLOOK

Let's compare both FI variants on mt cars:





- Both methods are biased toward features with more levels (i.e., continuous or categoricals with many categories)
- More advanced versions exist
- PFI and FI have been generalized, see our lecture on IML!