INTUITION BEHIND DECORRELATION

@ Since bootstrap samples are similar, models bI™ are correlated,
affecting the variance of an ensemble f

@ We would like variance to go down linearly with ensemble size, but
because of correlation we cannot really expect that

@ Assuming Var(bl™) = &2, Corr(bl™, bUl) = p, semi-formal
analysis, without proper analysis of prediction error:
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@ Ensemble variance is “convex-combo of linear-reduction and
no-reduction, controlled by p”

@ Maybe we can decorrelate trees, to reduce ensemble variance?
And get less prediction error?
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RANDOM FEATURE SAMPLING

RFs decorrelate trees with a simple randomization:

B @ For each node of tree, randomly draw mtry < p features

. (mtry = name in some implementations)

@ Only consider these features for finding the best split

@ Careful: Our previous analysis was simplified! The more we

decorrelate by this, the more random the trees become!
This also has negative effects!
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EFFECT OF FEATURE SAMPLING
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| @ Optimal mtry typically larger for regression than for classification

@ Good defaults exist, but still most relevant tuning param
@ Rule of thumb:

B ¢ Classification: mtry = | /p|
B ¢ Regression: mtry = |p/3|
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TREE SIZE

In addition to mtry, RFs have two other important HPs:

@ Min. nr. of obs. in each decision tree node
Default (ranger): min.node.size = 5
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® Depth of each tree
Default (ranger): maxDepth = oo

@ There are more alternative HPs to control depth of tree:
minimal risk reduction, size of terminal nodes, etc.

RF usually use fully expanded trees, without aggressive early stopping
or pruning, to further increase variability of each tree.
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CAN RF OVERFIT?

@ Just like any other learner, RFs can overfit!
@ However, RFs generally less prone to overfitting than individual CARTSs.

@ Overly complex trees can still lead to overfitting!
If most trees capture noise, so does the RF.

@ But randomization and averaging helps.
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Since each tree is trained individually and without knowledge of previously
trained trees, increasing ntrees generally reduces variance without
increasing the chance of overfitting!
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RF IN PRACTICE

@ Benchmarking bagged ensembles with 100 BLs each on spam versus RF O O x
B (ntrees =100, mtry = ,/p, minnode = 1), we see how well RF performs!
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= RFs combine the benefits of random feature selection and fully expanded trees.
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