INTUITION BEHIND DECORRELATION

- Since bootstrap samples are similar, models $\hat{b}^{[m]}$ are correlated, affecting the variance of an ensemble \hat{f}
- We would like variance to go down linearly with ensemble size, but because of correlation we cannot really expect that
- Assuming Var(b̂^[m]) = σ², Corr(b̂^[m], b̂^[j]) = ρ, semi-formal analysis, without proper analysis of prediction error:

$$\operatorname{Var}\left(\hat{f}\right) = \operatorname{Var}\left(\frac{1}{M} \sum_{m=1}^{M} \hat{b}^{[m]}\right) = \frac{1}{M^{2}} \left(\sum_{m=1}^{M} \operatorname{Var}(\hat{b}^{[m]}) + 2\sum_{m < j} \operatorname{Cov}(\hat{b}^{[m]}, \hat{b}^{[j]})\right)$$
$$= \frac{1}{M^{2}} \left(M\sigma^{2} + 2\frac{M(M-1)}{2}\rho\sigma^{2}\right) = (1-\rho)\frac{\sigma^{2}}{M} + \rho\sigma^{2}$$

- Ensemble variance is "convex-combo of linear-reduction and no-reduction, controlled by ρ"
- Maybe we can decorrelate trees, to reduce ensemble variance?
 And get less prediction error?

RANDOM FEATURE SAMPLING

RFs decorrelate trees with a simple randomization:

- For each node of tree, randomly draw mtry ≤ p features (mtry = name in some implementations)
- Only consider these features for finding the best split
- Careful: Our previous analysis was simplified! The more we decorrelate by this, the more random the trees become! This also has negative effects!

	Color	Porm	Length	Origin	Benene
777	yellow	oblong	14	Imported	yes
	brown		19		no
/ \	red		6		no

EFFECT OF FEATURE SAMPLING

- Optimal mtry typically larger for regression than for classification
- · Good defaults exist, but still most relevant tuning param
- Rule of thumb:
 - Classification: $\mathtt{mtry} = \lfloor \sqrt{p} \rfloor$
 - Regression: mtry = |p/3|

TREE SIZE

In addition to mtry, RFs have two other important HPs:

Min. nr. of obs. in each decision tree node
 Default (ranger): min.node.size = 5

- Depth of each tree
 Default (ranger): maxDepth = ∞
- There are more alternative HPs to control depth of tree: minimal risk reduction, size of terminal nodes, etc.

RF usually use fully expanded trees, without aggressive early stopping or pruning, to further increase variability of each tree. • LOUPPE 2015

CAN RF OVERFIT? Probst and Boulesteix 2018

- Just like any other learner, RFs can overfit!
- However, RFs generally less prone to overfitting than individual CARTs.
- Overly complex trees can still lead to overfitting!
 If most trees capture noise, so does the RF.
- But randomization and averaging helps.

Since each tree is trained *individually* and *without* knowledge of previously trained trees, increasing ntrees generally reduces variance without increasing the chance of overfitting!

RF IN PRACTICE

Benchmarking bagged ensembles with 100 BLs each on spam versus RF (ntrees = 100, mtry = \sqrt{p} , minnode = 1), we see how well RF performs!

× × ×

⇒ RFs combine the benefits of random feature selection and fully expanded trees.