TEST ERROR AND HOLD-OUT SPLITTING

@ Simulate prediction on unseen data, to avoid optimistic bias:
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@ Partition data, e.g., 2/3 for train and 1/3 for test.
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A.k.a. holdout splitting.
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m EXAMPLE: POLYNOMIAL REGRESSION /2

Now with fresh test data:

y - o be Lo True function
@ d =1: MSE = 0.038: clearly underfitting

® d = 3: MSE = 0.002: pretty OK

@ d = 9: MSE = 0.046: clearly overfitting

While train error monotonically decreases in d, test error shows that
high-d polynomials overfit.
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TRAINING VS. TEST ERROR /2

The training error...
@ decreases with increasing model complexity as the model gets
better at learning more complex structures.
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m TRAINING VS. TEST ERROR /3

The test error...
@ will typically decrease with larger training set size as the model
generalizes better with more data to learn from.
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m TRAINING VS. TEST ERROR /4

The test error...
@ will have higher variance with smaller test set size.
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m TRAINING VS. TEST ERROR /5

The test error...
@ will have higher variance with increasing model complexity.
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BIAS AND VARIANCE

@ Test error is a good estimator of GE, given a) we have enough
data b) test data is representative i.i.d.

@ Estimates for smaller test sets can fluctuate considerably - this is
why we use resampling in such situations.
Repeated % / 1 holdout splits:
iris (n = 150) and sonar (n = 208).
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BIAS-VARIANCE OF HOLD-OUT - EXPERIMENT

Hold-out sampling produces a trade-off between bias and variance
that is controlled by split ratio.

Smaller training set — poor fit, pessimistic bias in GE.
Smaller test set — high variance.

Experiment:

spiralsdata (sd = 0.1), with CART tree.

Goal: estimate real performance of a model with |Dyain | = 500.
Split rates s € {0.05,0.10,...,0.95} with | Dyain| = s - 500.
Estimate error on Dygg With |Dyegy| = (1 — s) - 500.

50 repeats for each split rate.

Get "true" performance by often sampling 500 points, fit learner,
then eval on 10° fresh points.
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m BIAS-VARIANCE OF HOLD-OUT - EXPERIMENT /2
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@ Clear pessimistic bias for small training sets — we learn a much
worse model than with 500 observations.

@ But increase in variance when test sets become smaller.
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m BIAS-VARIANCE OF HOLD-OUT - EXPERIMENT /3

@ Let's now plot the MSE of the holdout estimator.

@ NB: Not MSE of model, but squared difference between estimated
holdout values and true performance (horiz. line in prev. plot).

@ Best estimator is ca. train set ratio of 2/3.

@ NB: This is a single experiment and not a scientific study, but this
rule-of-thumb has also been validated in larger studies.
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