ESTIMATING THE GENERALIZATION ERROR

- For a fixed model, we are interested in the Generalization Error (GE): GE $(\hat{f}, L) := \mathbb{E}\left[L\left(y, \hat{f}(\mathbf{x})\right)\right]$, i.e. the expected error the model makes for data $(\mathbf{x}, y) \sim \mathbb{P}_{xy}$.
- We need an estimator for the GE with m test observations:

$$\widehat{GE}(\widehat{f}, L) := \frac{1}{m} \sum_{(\mathbf{x}, y)} \left[L\left(y, \widehat{f}(\mathbf{x})\right) \right]$$

- However, if (x, y) ∈ D_{train}, GE(f̂, L) will be biased via overfitting the training data.
- Thus, we estimate the GE using unseen data (x, y) ∈ D_{test}:

$$\widehat{\mathrm{GE}}(\hat{f}, L) := \frac{1}{m} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{D}_{test}} \left[L\left(\boldsymbol{y}, \hat{f}(\boldsymbol{x})\right) \right]$$

ESTIMATING THE GENERALIZATION ERROR /2

- Usually, we have no access to new unseen data.
- Thus, we divide our data set manually into D_{train} and D_{test}.
- This process is depicted below.

METRICS FOR CLASSIFICATION /2

For hard-label classification, the confusion matrix is a useful representation:

		True Class y	
		+	_
Pred.	+	True Positive	False Positive
		(TP)	(FP)
ŷ	_	False Negative	True Negative
		(FN)	(TN)

From this matrix a variety of evaluation metrics, including precision and recall, can be computed.

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP \pm FN}$$

ESTIMATING THE GENERALIZATION ERROR (BETTER)

While

$$\widehat{\mathrm{GE}}(\widehat{f}, L) := \frac{1}{m} \sum_{(\mathbf{x}, y) \in \mathcal{D}_{best}} \left[L\left(y, \widehat{f}(\mathbf{x})\right) \right]$$

will be unbiased, with a small mit will suffer from high variance. We have two options to decrease the variance:

- Increase m.
- Compute GE(f, L) for multiple test sets and aggregate them.

With a finite amount of data, increasing m would mean to decrease the size of the training data. Thus, we focus on using multiple (B) test sets:

$$\mathcal{J} = ((J_{\text{train},1}, J_{\text{test},1}), \dots, (J_{\text{train},B}, J_{\text{test},B})).$$

where we compute $\widehat{\mathrm{GE}}(\widehat{f},L)$ for each set and aggregate the estimates. These B sets are generated through **resampling**.

