MOTIVATION

@ Let's build a discriminant approach, for binary classification, as a
probabilistic classifier 7(x | 8)

@ We encode y € {0, 1} and use ERM:

n
argmin R @) = arg min L (y(f'). e (x(f'] |®
f=8 emp( ) 8= Z ))

=11
@ We want to “copy” over ideas from linear regression

@ In the above, our model structure should be “mainly” linear and we
need a loss function

Inroguction 10 Machind Laarning —11 /9



DIRECT LINEAR MODEL FOR PROBABILITIES

We could directly use an LM to model 7(x | @) = 6" x.

And use L2 loss in ERM.
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But: This obviously will result in predicted probabilities =(x | ) ¢ [0, 1]!
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HYPOTHESIS SPACE OF LR

To avoid this, logistic regression “squashes” the estimated linear scores

B 6 xto[0,1] through the logistic function s:
exp (67x) 1 :
(x16) 1+exp(@'x) 1+exp(—07x) s( x) s(1(x))
10 ('] 0
= Hypothesis space of LR:
H = {n X [0.1] | (x| 0) = s(8"x)| 0 < Rﬂ“}
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LOGISTIC FUNCTION

Intercept fy shifts = = s(f + f) = % horizontally
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THE LOGIT

B Theinverse s '(n) = log (&) where 7 is a probability is called logit
(also called log odds since it is equal to the logarithm of the odds =)

logtin)

60
oo o3 a0 oars 100

@ Positive logits indicate probabilities > 0.5 and vice versa
@ E.g.:if p=0.75, odds are 3 : 1 and logit is log(3) ~ 1.1

] @ Features x act linearly on logits, controlled by coefficients 6:
1 7(x) T
s (m(x)) =1 ——— ] =0"x
(w(x)) = log (1 . ﬂ(x))
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DERIVING LOG-LOSS

We need to find a suitable loss function for ERM. We look at likelihood
which multiplies up 7 (x() | 8) for positive examples, and
1 — (x| @) for negative.

co)= [ n(x(')|0) 11 (1—7r(x(')|0))

i with y(0=1 i with y()=0

We can now cleverly combine the 2 cases by using exponents
(note that only one of the 2 factors is not 1 and “active”):

£(0) = fl“ (x(i) | o)yl"‘> (1 . (x(i) | 0))1—y|-‘)
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BERNOULLI/LOGLOSS
Theresultinglossonvert products into sums O O X
B T IR (e

is called Bernoulli, binomlal Iog or cross-entropy loss X x
Y ylog (m(x8)) + (1 -y )log (1 - [x"]6))
wtong
: v
=0
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: [ x' 0
» Q. 0 050 0.75 00
alx)

@ Penalizes confidently wrong predictions heavily
@ |s used for many other classifiers, e.g., in NNs or boosting
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LOGISTIC REGRESSION IN 2D
LRes@linear classifier, as 7(x | #) = s (0 x) and s is isotonic. O 0O X

L(y,) y log(r) (1 y)log(1 x O
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] OPTIMIZATIONRESSION IN 2D

“FesLbgllioss is tonvex; undér régularity tohditions’ L R Has'a unique

solution (because of its linear structure), but not an analytical one

@ To fit LR we use numerical optimization, e.g., Newton-Raphson
o [f data is linearly separable, the optimization problem i nded

and vgeWoyld notbfind a solution; way out is regularization
Why not usé least squares on 7(x) = s(f(x))?
Answer: ERM FGBIem is not convex-anymore :(
We can also write the ERM as !
a ° n ’
o  rw i i (i
dls,cuel)m Remp(0) = dlz’.;;”e““ Z [ (y( ) f (X ) | o))

=1

With f(x | 8) = @Tx and L (y, f) = —yf + log(1 + exp(f))

This combines the sigmoid with the loss and shows a convex loss
directly on a linear function
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OPTIMIZATION

Log-Loss is convex, under regularity conditions LR has a unique
solution (because of its linear structure), but not an analytical one

@ To fit LR we use numerical optimization, e.g., Newton-Raphson

@ If data is linearly separable, the optimization problem is unbounded

and we would not find a solution; way out is regularization

Why not use least squares on 7(x) = s(f(x))?
Answer: ERM problem is not convex anymore :(

We can also write the ERM as

. o
arg’rginRemp(B) = arog‘ rgjn 21: L (y(;). f (x(.jl 3))

With f(x | ) = 8"x and L (y, f) = —yf + log(1 + exp(f))

This combines the sigmoid with the loss and shows a convex loss
directly on a linear function
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