MOTIVATION

- Let's build a **discriminant** approach, for binary classification, as a probabilistic classifier $\pi(\mathbf{x} \mid \boldsymbol{\theta})$
- We encode $y \in \{0, 1\}$ and use ERM:

$$\underset{\boldsymbol{\theta} \in \Theta}{\arg\min} \, \mathcal{R}_{\mathsf{emp}}(\boldsymbol{\theta}) = \underset{\boldsymbol{\theta} \in \Theta}{\arg\min} \sum_{i=1}^{n} L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)$$

- · We want to "copy" over ideas from linear regression
- In the above, our model structure should be "mainly" linear and we need a loss function

DIRECT LINEAR MODEL FOR PROBABILITIES

We could directly use an LM to model $\pi(\mathbf{x} \mid \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \mathbf{x}$. And use L2 loss in ERM.

But: This obviously will result in predicted probabilities $\pi(\mathbf{x} \mid \boldsymbol{\theta}) \notin [0, 1]!$

HYPOTHESIS SPACE OF LR

To avoid this, logistic regression "squashes" the estimated linear scores $\theta^{\top} \mathbf{x}$ to [0, 1] through the **logistic function** s:

$$\pi(\mathbf{x} \mid \boldsymbol{\theta}) = \frac{\exp\left(\boldsymbol{\theta}^{\top}\mathbf{x}\right)}{1 + \exp\left(\boldsymbol{\theta}^{\top}\mathbf{x}\right)} = \frac{1}{1 + \exp\left(-\boldsymbol{\theta}^{\top}\mathbf{x}\right)} = s\left(\boldsymbol{\theta}^{\top}\mathbf{x}\right) = s(f(\mathbf{x}))$$

⇒ Hypothesis space of LR:

$$\mathcal{H} = \left\{ \pi: \mathcal{X} \rightarrow [0,1] \mid \pi(\boldsymbol{x} \mid \boldsymbol{\theta}) = s(\boldsymbol{\theta}^{\top}\boldsymbol{x}) \mid \boldsymbol{\theta} \in \mathbb{R}^{p+1} \right\}$$

LOGISTIC FUNCTION

Intercept
$$\theta_0$$
 shifts $\pi = s(\theta_0 + f) = \frac{\exp(\theta_0 + f)}{1 + \exp(\theta_0 + f)}$ horizontally

THE LOGIT

The inverse $s^{-1}(\pi) = \log\left(\frac{\pi}{1-\pi}\right)$ where π is a probability is called **logit** (also called **log odds** since it is equal to the logarithm of the odds $\frac{\pi}{1-\pi}$)

- Positive logits indicate probabilities > 0.5 and vice versa
- E.g.: if p = 0.75, odds are 3: 1 and logit is $log(3) \approx 1.1$
- Features x act linearly on logits, controlled by coefficients θ:

$$s^{-1}(\pi(\mathbf{x})) = \log\left(\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})}\right) = \boldsymbol{\theta}^T x$$

DERIVING LOG-LOSS

We need to find a suitable loss function for **ERM**. We look at likelihood which multiplies up $\pi\left(\mathbf{x}^{(i)}\mid\boldsymbol{\theta}\right)$ for positive examples, and $1-\pi\left(\mathbf{x}^{(i)}\mid\boldsymbol{\theta}\right)$ for negative.

$$\mathcal{L}(\boldsymbol{\theta}) = \prod_{i \text{ with } y^{(i)} = 1} \pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \prod_{i \text{ with } y^{(i)} = 0} (1 - \pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right))$$

We can now cleverly combine the 2 cases by using exponents (note that only one of the 2 factors is not 1 and "active"):

$$\mathcal{L}(\boldsymbol{\theta}) = \prod_{i=1}^{n} \pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right)^{y^{(i)}} \left(1 - \pi \left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)^{1 - y^{(i)}}$$

BERNOULLI7 LOG LOSS

The resulting loss onvert products into sums:

$$\ell(\theta) = \log \mathcal{L}(\theta) = \sum_{i=1}^{L} \log \left(\frac{\pi}{\pi} (\mathbf{x}^{(i)}) - (\mathbf{1}^{(i)} \mathbf{y}^{(i)}) \log (\mathbf{1}^{(i)} \mathbf{x}^{(i)}) + \theta \right)^{1-y^{(i)}}$$
 is called **Bernoulli**, **binomial**, **log** or **cross-entropy** loss

- · Penalizes confidently wrong predictions heavily
- . Is used for many other classifiers, e.g., in NNs or boosting

EOGISTIC REGRESSION IN 2D

LR is a linear classifier, as $\pi(\mathbf{x} \mid \boldsymbol{\theta}) = s(\boldsymbol{\theta}^{\top}\mathbf{x})$ and s is isotonic.

$$L(y, \pi) = -y \log(\pi) - (1 - y) \log(1 - \pi)$$

- Penalizes confidently wrong predictions heavily
- Is used for many other classifiers, e.g., in NNs or boosting

OPTIMIZATION RESSION IN 2D

- Log Loss is convex, under regularity conditions LR has a unique solution (because of its linear structure), but not an analytical one
 - To fit LR we use numerical optimization, e.g., Newton-Raphson
 - If data is linearly separable, the optimization problem is unbounded and we would not find a solution; way out is regularization
 - Why not use least squares on $\pi(\mathbf{x}) = s(f(\mathbf{x}))$?

 Answer: ERM problem is not convex anymore :(
 - We can also write the ERM as

$$\underset{\theta \in \Theta}{\operatorname{arg\,min}} \mathcal{R}_{emp}(\theta) = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \theta\right)\right)_{10}$$

With
$$f(\mathbf{x} \mid \boldsymbol{\theta}) = \boldsymbol{\theta}^T \mathbf{x}$$
 and $L(y, f) = -yf + \log(1 + \exp(f))$

This combines the sigmoid with the loss and shows a convex loss directly on a linear function

OPTIMIZATION

- Log-Loss is convex, under regularity conditions LR has a unique solution (because of its linear structure), but not an analytical one
- To fit LR we use numerical optimization, e.g., Newton-Raphson
- If data is linearly separable, the optimization problem is unbounded and we would not find a solution; way out is regularization
- Why not use least squares on $\pi(\mathbf{x}) = s(f(\mathbf{x}))$? Answer: ERM problem is not convex anymore :(
- We can also write the ERM as

$$\underset{\theta \in \Theta}{\arg\min} \, \mathcal{R}_{\text{emp}}(\theta) = \underset{\theta \in \Theta}{\arg\min} \, \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \theta\right)\right)$$

With
$$f(\mathbf{x} \mid \boldsymbol{\theta}) = \boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}$$
 and $L(y, f) = -yf + \log(1 + \exp(f))$

This combines the sigmoid with the loss and shows a convex loss directly on a linear function

